Nov., 1962

these conclusions can be drawn with considerable confidence: 1. Only one species contributes to the absorbance at a given isosbestic point. 2. The equilibrium of this species is not appreciably affected by temperature changes. 3. The only manner in which isosbestic points can be generated is for the absorptivity of one species at a given wave length to be linearly dependent on temperature, at least to a good approximation.⁴ 4. Multiplication of a family of absorption spectra generated at temperatures $t_1, t_2, t_3, \ldots, t_n$ by the corresponding factor $(1 + \gamma t_n)/(1 + \gamma t_1)$, to a good approximation, only shifts and does not destroy the isosbestic points which have resulted in the original generation.

NOTE ADDED IN PROOF.—Since the foregoing paper was submitted for publication, Cohen and Fischer have concluded in a paper entitled "Isosbestic Points" (J. Chem. Soc.,

(4) It is possible that $\epsilon_i(\lambda) = \epsilon_i^0(\lambda) \exp h(\lambda)t$; in the approximation of $h(\lambda)t <<1$, it would thus assume the form given in eq. 11.

3044 (1962)) that whenever absorbing components are related linearly, isosbestic points are not confined to two-component systems. It is hoped that the foregoing paper will clearly show that although possible in principle, it is exceedingly unlikely that isosbestic points will arise from multicomponent absorbing systems, even when they are linearly related, especially when more than one isosbestic point occurs.

Cohen and Fischer are correct in stating that systems producing isosbestic points are characterized by only one degree of freedom. At constant temperature two absorbing components are allowed, provided they are linearly related. When temperature is varied, there are no compositional degrees of freedom and only one absorbing component is allowed. Presumably, then, variation of total pressure on a system containing only one absorbing component could give rise to isosbestic points.

Acknowledgments.—The tetraethylammonium dioxotrinitratouranate(VI) of Fig. 2 was kindly supplied by J. L. Ryan of this Laboratory. The author also wishes to acknowledge Drs. G. P. Smith and C. R. Boston for a stimulating discussion on this subject.

SECONDARY REACTIONS IN CONTROLLED POTENTIAL COULOMETRY. II. SECONDARY ELECTRODE REACTIONS

BY ALLEN J. BARD AND JASPAL S. MAYELL

Department of Chemistry, The University of Texas, Austin 12, Texas

Received April 23, 1962

Controlled potential coulometric experiments in which the product of the primary electrode reaction undergoes secondary chemical reactions involving the formation of an electroactive species are considered. A mathematical treatment of the effect of these secondary reactions upon n_{app} , the apparent number of faradays per mole of electroactive material, and upon current-time behavior, is given. The use of controlled potential coulometric data for the determination of the number of electrons involved in each electrode reaction, for the elucidation of the over-all reaction mechanism, and for the estimation of the rate constants of the intervening chemical reactions, is described, and several examples are given.

Introduction

Controlled potential coulometric electrolysis, a technique for studying electrode reactions, is mainly used for the determination of n, the number of faradays per mole of electroactive substance consumed, and for the production of macro amounts of electrolysis products. When secondary chemical reactions occur, non-integral *n*-values are sometimes found, and by examination of the variation of n with such variables as concentration and stirring rate, information about the mechanism of the electrode reaction can be obtained. In a previous communication¹ the effects of secondary chemical reactions between the product of the primary electrode reaction and the original electroactive species, or secondary reactions leading to the regeneration of the electroactive species, were discussed. This paper discusses cases in which the product of the primary electrode reaction undergoes reactions leading to the occurrence of additional electrode reactions, and the effect of these secondary electrode reactions upon n, and upon the variation of the electrolysis current with time. The use of controlled potential coulometric data for the determination of the number of electrons involved in the electrode reactions, for the elucidation of the over-all mechanism of the electrode reaction, and

(1) D. H. Geske and A. J. Bard, J. Phys. Chem., 63, 1057 (1959).

for the estimation of the rate constants of the intervening chemical reactions, is described.

Classification.—The four general cases are classified according to the behavior of the reaction intermediate, R. The primary electrode reaction is represented as

$$C \pm ne^- \longrightarrow R$$

where C is the electroactive material and R is the soluble primary product of the electrode reaction. In the reactions below, A, B, P, R₂, Y, and Z represent electrolytically inert materials and the applied potential is such that all electrode reactions occur without activation polarization.

Case I. R' Undergoes a Single Secondary Pseudo-first Order Reaction and an Electrode Reaction.—

$$R \xrightarrow{\longrightarrow} R'$$
$$R' + Z \longrightarrow P$$
$$R' \pm ne^- \longrightarrow Y$$

Case II. R' Undergoes a Single Second-order Reaction and an Electrode Reaction.—

$$R \rightleftharpoons R'$$

Case III. R Undergoes Parallel Pseudo-first Order Secondary Reactions, One of Which Produces an Electroactive Species.—

$$R + Z \longrightarrow R' + B$$
$$R + A \longrightarrow P$$
$$R' \pm ne^{-} \longrightarrow Y$$

Case IV. R Undergoes Parallel Secondary Reactions; a Second-order Reaction and a Pseudofirst Order Reaction Which Produces an Electroactive Species.—

$$R + Z \longrightarrow R' + A$$
$$2R \longrightarrow R_2$$
$$R' \pm ne^- \longrightarrow Y$$

Variations of these cases, two of which are discussed later, can be treated by suitable modification of the procedure outlined below.

Mathematical Treatment

General Considerations.—The assumptions and conditions of this treatment are the same as those previously described.¹ The current, i, taken as a positive quantity, is related to the rate of consumption of C and the rate of the production of Y by

$$i = -n_1 FV[d(C)/dt] \text{ electrode reaction } + n_2 FV[d(Y)/dt] \text{ electrode reaction} \quad (1)$$

where F is the faraday, V is the total volume of the solution, and (C) and (Y) are the concentrations of species C and Y, respectively. The rates of concentration change under limiting current conditions are

$$[\mathrm{d}(C)/\mathrm{d}t] \text{ elec. rxn.} = -p(C) \qquad (2)$$

$$[d(Y)/dt] \text{ elec. rxn.} = p(R')$$
 (3)

where p is a constant, depending upon the prevailing mass transfer conditions, electrode area, solution volume and cell geometry,¹ and is assumed to be the same for both electrode reactions. Combination of (1), (2), and (3) yields

$$i = n_1 F V p(C) + n_2 F V p(R') \tag{4}$$

The apparent number of electrons per mole of electroactive materials, n_{app} , is determined experimentally, and is defined as

$$n_{\rm app} = \frac{\int_0^t i \, dt}{FV[(C_1) - (C)]}$$
(5)

where (C_i) is the initial concentration of C. The notation n^0_{app} refers to evaluation of n_{app} at the completion of the electrolysis, where (C) approaches zero

$$n^{0}_{app} = \frac{\int_{0}^{\infty} i \, \mathrm{d}t}{FV(C_{i})} = \frac{Q}{FN} \tag{6}$$

where N is the number of moles of C, and Q is the amount of electricity consumed in coulombs.

Since C is only involved in the primary electrode reaction, the equation

$$(C) = (C_i)e^{-pt}$$
 (7)

holds in all cases.

Case I.—The intermediate R changes to R' before undergoing the competing reactions

$$\mathbf{R}' + \mathbf{Z} \xrightarrow{k_1} \mathbf{P} \tag{8}$$

$$R' \pm n_2 e^- \longrightarrow Y$$
 (9)

The production of R' is assumed to be rapid enough so that the rate of this reaction does not enter into the over-all kinetics of the reaction. When k_1 is either very large or very small, integral values of n_{app}^{0} are obtained. For $k_1 \approx 0$, the reaction is composed of two succeeding electrode reactions, and $n_{app}^{0} = n_1 + n_2$, while when k_1 is large, $n_{app}^{0} \approx n_1$. For the purposes of this discussion Z is assumed present in large excess, so that (8) is a pseudo-first order reaction, with $k_1' = k_1(Z)$. The system is described by the equation

$$d(R')/dt = p(C) - k_1'(R') - p(R') \quad (10)$$

Solving (7) and (10), the value of \mathbf{R}' as a function of time is obtained

$$(R') = \frac{p}{k_1'} (C_i) e^{-pt} (1 - e^{-k_1't}) \quad (11)$$

Combining (4) and (11) the variation of i with time is obtained

$$i = FpV(C_i)e^{-pt}\left[n_1 + n_2\frac{p}{k_1'}\left(1 - e^{-k_1't}\right)\right]$$
(12)

The log current vs. time plots in Fig. 1 indicate that the observed deviation from linearity is only slight. Integration of eq. 12 with respect to time, and introduction into (6) yields

$$n_{\rm app}^0 = n_1 + n_2 [1/(1+\lambda)]$$
 (13)

where $\lambda = k_1'/p$. Variation of n_{app}^0 with λ , shown in Fig. 2, indicates that non-integral values of n_{app}^0 will be obtained for a range of λ of 10^{-2} to 10^2 . For this reaction scheme, n_{app}^0 is independent of changes in (C_i) .

The modification of Case I, where the production of \mathbf{R}' is kinetically controlled

$$R \xrightarrow{\kappa_1} R'$$
 (14)

with no competitive secondary reaction, may be treated in a similar manner. The equations describing the system are

$$d(R)/dt = p(C) - k_1(R)$$
 (15)

$$d(R')/dt = k_1(R) - p(R')$$
 (16)

Nov., 1962

Solving (7), (15), and (16) yields

$$(R') = \frac{k_1 p(C_1)}{(k_1 - p)^2} \left[(k_1 - p) t e^{-pt} - e^{-pt} + e^{-k_1 t} \right]$$
(17)

and

$$i = pFV(C_i) \left\{ n_1 e^{-pt} + \frac{n_2 k_1 p}{(k_1 - p)^2} \times [(k_1 - p)t e^{-pt} - e^{-pt} + e^{-k_1 t}] \right\}$$
(18)

Variations of log *i* with *t* for several values of k_1 is shown in Fig. 3. Under all conditions $n_{app}^0 = n_1$ $+ n_2$.

Case II.—The intermediate R changes to R' before undergoing the competing reactions

$$2\mathbf{R}' \xrightarrow{k_1} \mathbf{R}_2$$
 (19)

$$\mathbf{R}' \pm n_2 \mathbf{e} \longrightarrow \mathbf{Y}$$
 (20)

The limits of n_{app}^{o} for very large and very small k_1 's are the same as in Case I. The production of R' is given by

$$d(R')/dt = p(C) - p(R') - k_1(R')^2$$
 (21)

Combining (21) with (7), a second degree equation in (R') and t which cannot be solved in closed form is obtained. This equation also results as a special case of the reaction scheme in case IV, and results of the numerical solution of this equation will be discussed in that section.

Case III.—R reacts in two parallel chemical reactions, and an electroactive substance is produced in one of these

$$R + Z \xrightarrow{\kappa_1} R' + B \qquad (22)$$

$$R + A \longrightarrow P$$
 (23)

$$\mathbf{R}' \pm n_2 \mathbf{e}^- \longrightarrow \mathbf{Y}$$
 (24)

This treatment assumes Z and A are present in large excess, so that reactions 22 and 23 are pseudofirst order reactions, with $k_1' = k_1(Z)$ and $k_2' = k_2(A)$. When the ratio of k_1'/k_2' is large, n_{app}^0 is essentially $n_1 + n_2$, while when k_1'/k_2' is small, $n_{app}^0 \approx n_1$. The system is described by the equations tions

$$d(R)/dt = p(C) - (k_1' + k_2')(R) \quad (25)$$

$$d(R')/dt = k_1'(R) - p(R')$$
 (26)

Combining (25) and (7) and solving for (R) yields

$$(R) = \frac{p(C_i)}{(k_1' + k_2' - p)} \left[e^{-pt} - e^{-(k_1' + k_2')t} \right]$$
(27)

Substituting (27) and (26), and solving for (R'), gives

$$(R') = \frac{k_1' p(C_i)}{(k_1' + k_2' - p)^2} \times e^{-pt} \left[e^{-(k_1' + k_2' - p)t} + (k_1' + k_2' - p)t - 1 \right]$$
(28)

Fig. 1.—Case I: log *i* vs. *t* at different values of k_1' , calculated for V = 0.2 l., $p = 10^{-3}$ sec.⁻¹, $(C_i) = 1.0$ mM, and $n_1 = n_2 = 1$.

Fig. 2.—Case I: variation of n_{app}^{0} with λ .

and, from (4)

$$i = pFV(C)e^{-pt} \left[n_1 + \frac{n_2k_1'p}{(k_1' + k_2' - p)^2} \times \left[e^{-(k_1' + k_2' - p)t} + (k_1' + k_2' - p)t - 1 \right] \right]$$
(29)

The variation of current with time for several values of k_1' and k_2' is shown in Fig. 4. Combination of (29) and (6) yields

$$n_{\rm app}^0 = n_1 + n_2 [1/(1 + \lambda')]$$
 (30)

where $\lambda' = k_2'/k_1'$. Equation 30 is the same form as (13), and variation of n_{app}^0 with λ' can be observed from Fig. 2, if λ is replaced by λ' .

Case IV.---R reacts in two parallel chemical reactions, one a second-order reaction and the other a pseudo-first order reaction generating an electroactive species.

Fig. 3.—Case I: log *i* vs. *t* at different values of k_1 calculated for V = 0.2 l., $p = 10^{-3}$ sec.⁻¹, $(C_i) = 1.0$ mM, and $n_1 = n_2 = 1$.

 \mathbf{k}

$$\mathbf{R} + \mathbf{Z} \xrightarrow{\mathbf{x}_{i}} \mathbf{R}' + \mathbf{B} \tag{31}$$

$$2R \longrightarrow R_2$$
 (32)

$$\mathbf{R}' \pm n_2 \mathbf{e}^- \longrightarrow \mathbf{Y} \tag{33}$$

The system is described by the equations

$$d(R)/dt = p(C) - k_1'(R) - k_2(R)^2 \quad (34)$$

$$d(R')/dt = k_1'(R) - p(R')$$
 (35)

where $k_1' = k_1(Z)$, Z being assumed present in large excess. Combination of (24) and (7) yields

$$d(R)/dt = p(C_i)e^{-pt} - k_1'(R) - k_2(R)^2 \quad (36)$$

It was not possible to obtain a closed-form solution of eq. 36. Numerical solutions were obtained with the aid of a CDC 1604 computer employing a program based on the Adams-Moulton and Runge-Kutta methods. The values of (R) as a function of time for several values of k_1' and k_2 are shown in Fig. 5. Combination of (4), (6), and (7) yields

$$n_{app}^{0} = n_{1} + \frac{n_{2}p}{(C_{i})} \int_{0}^{\infty} (R') dt$$
 (37)

and solving (35)

$$\int_0^\infty (R') \mathrm{d}t = \frac{k_1'}{p} \int_0^\infty (R) \mathrm{d}t \qquad (38)$$

Fig. 4.—Case III: log *i* vs. *t* at different values of k_2'/k_1' calculated for V = 0.2 l., $p = 10^{-3}$ sec.⁻¹, $(C_i) = 1.0$ mM, and $n_1 = n_2 = 1$.

Fig. 5.—Case IV: variation of (R) with t at different values of k_1' , k_2 , p, and C_i .

The values of $\int_0^{\infty} (R) dt$ were obtained by graphical integration of (R) vs. time plots, and values of n_{app}^0 for different values of k_1' and k_2 are shown in Fig. 6. Although the behavior of (R) with time is different for the same value of the ratio k_1'/k_2 , for different individual values of k_1' and k_2 (compare curves 1 and 3, Fig. 5), the area under curves of the same, so that the curves in Fig. 6 depend only upon the ratio of the rate constants.

The variation of the current with time was calculated for several values of k_1' and k_2 by solving eq. 35 for (R'), using values of (R) obtained from the numerical solution of (36), and introducing them into (4). The current-time curves in Fig. 7 depend upon the individual values of k_1' and k_2 , rather than their ratio.

Discussion

The rate constants for the secondary chemical reactions in the preceding schemes can be determined from (1) the behavior of the electrolysis current with time, (2) the variation of n_{app}^{0} with p and (C_i) , and (3) the relative quantities of prod-ucts formed. The current-time behavior in general does not give sufficient information to allow the prediction of reaction mechanisms or the estimation of rate constants. In all cases the current decays to background level, and the slight curvature of $\log i-t$ curves, although indicative of kinetic complications, is not significant enough to allow differentiation between the cases. Moreover, curvature of log *i*-t curves may result in even simple electrode reactions if the potential of the electrode is not maintained at the mass-transfer limiting region. However current-time curves do allow differentiation between these cases and catalytic reactions¹ (reactions involving the regeneration of the original electroactive substance by a chemical reaction following the electrode reaction), in which case the current decays to a constant value larger than the background current.

Differentiation among the four cases under study here can be most easily accomplished by observing the variation of n_{app}^{0} with (\bar{C}_{i}) , p, and solvent. In case I, n_{app}^0 is independent of (C_i) , p, and solvent. In case I, n_{app}^0 is independent of (C_i) , but varies with p. In case III, n_{app}^0 is independent of both (C_i) and p. Cases II and IV are indicated when n_{app}^0 is dependent upon both (C_i) and p. Differentiation between these two cases may sometimes be accomplished by changing the solvent or supporting electrolyte (the usual reactants in the secondary chemical reaction), since case IV involves reaction with a second substance while case II does not. Variation of n_{app}^0 with temperature will sometimes be a useful diagnostic aid.² The analy-sis of products obtained in controlled potential coulometry is certainly an important aid for deducing reaction mechanisms. Quantitative analysis of these products should lead to reinforcement of the n^{0}_{app} data. In some cases this data alone may be useful in estimating rate constants, especially when n_{app}^{0} data is difficult to obtain, (e.g., when an appreciable background current is present).

The range of rate constants accessible for evaluation by these methods depends upon the particular case. Taking p to be adjustable between 10^{-1} and 10^{-4} sec.⁻¹, then for case I, k_1' in the range of 1 to 10^{-5} sec.⁻¹ will lead to non-integral values of n_{app}^0 . For case II, the range of k_1 is between 10^{-1} and 10^{-7} sec.⁻¹, for usual concentrations. For cases III and IV only a ratio of rate constants can be obtained. This ratio may be between 10^{-2} and 10^2 for case III, and between 10^{-4} and 1 (depending upon (C_i)) for case IV. For very large rate constants, the theoretical model may not apply, even if the ratio of rate constants may still appear in the accessible range, since most of the chemical reaction will occur very close to the electrode surface and the homogeneous concentration of intermediate assumed in this treatment will not be obtained. Although qualitatively similar results will be observed in such cases, the calculated

(2) J. S. Mayell and A. J. Bard, to be submitted for publication.

Fig. 6.—Case IV: variation of n_{app}^{op} with log (C_i) at different values of $\lambda = k_1'/k_2$. O, experimental points obtained for electroreduction of benzyldimethylanilinium bromide at -35° in acetonitrile.

Fig. 7.—Case IV: log *i* vs. *t* at different values of k_1' and k_2 calculated for V = 0.2 l., $p = 10^{-3}$ sec.⁻¹, $(C_i) = 1.0$ mM, and $n_1 = n_2 = 1$.

numerical value of k_1'/k_2 may be significantly in error.

Examples of reaction schemes illustrated by the preceding cases will often be found in electrode reactions of organic substances. Frequently the product of the electrode reaction is a free radical which may couple with another radical, react with the solvent, or undergo further electrode reactions. Although the electroreduction of the potassium salt of 2-carboxybenzaldehyde (I) has not been studied by controlled potential coulometry, the products of the electrode reaction are said to be hydrodiphthalyl (II) and phthalide (III).^{3,4} A

(3) V. M. Rodionow and V. V. Levchenko, J. Gen. Chem. U.S.S.R., 6, 1563 (1936).

possible reaction mechanism leading to these products and corresponding to case II involves the reactions

The electroöxidation of hydrazine at a platinum electrode, recently discussed by Karp and Meites,^{5,6}

(4) M. J. Allen, "Organic Electrode Processes," Chapman and Hall, London, 1958, p. 71.
(5) S. Karp, M.S. Thesis, Polytechnic Institute of Brooklyn, 1960.

Fig. 8.—Variation of n_{spp}° with log (C_i) for modification of case II for different values of p/k_1 : O, experimental points from results of Karp and Meites for electroöxidation of hydrazine, in 0.05 F H₂SO₄.

is related to case II. The mechanism proposed by these authors for dilute sulfuric acid solutions is essentially

$$N_2H_4 - 2e \longrightarrow N_2H_3^+ + H^+ \quad (44)$$

$$N_2 H_3^+ \xrightarrow{} N_2 H_2 + H^+ \qquad (45)$$

$$1/_2(2N_2H_2 \xrightarrow{k_1} NH_3 + HN_3)$$
 (46)

$$^{1}/_{2}(HN_{3} - 1e \longrightarrow H^{+} + ^{3}/_{2}N_{2})$$
 (47)

$$N_2H_2 - 2e \longrightarrow N_2 + 2H^+ \qquad (48)$$

The previous treatment of case II requires modification before application to this reaction scheme because of reaction 47. The treatment is very similar to that given previously and the result is⁷

$$n^{0}_{app} = n_1 + n_2 + \frac{p(n_3 - n_2)}{(C_i)} \int_0^\infty (R') dt$$
 (49)

where n_1 , n_2 , and n_3 are the number of electrons involved in (44), (47), and (48), respectively. The values of the integral in (49) are the same as those determined numerically in case IV. The results for the variation of n_{app}^0 with (C_i) for the case of hydrazine ($n_1 = 2$, $n_2 = 1/2$, $n_3 = 2$) is shown in Fig. 8, with the experimental points given by Karp and Meites.^{5,6} The proposed mechanism does fit the expected coulometric behavior and yields a value of p/k_1 of about 10^{-3} .

This work was prompted by results obtained in the electroreduction of benzyldimethylanilinium bromide.² On the basis of controlled potential coulometry as well as polarographic and other data, the following mechanism, corresponding to case IV, was proposed

$$CH_{3} + C_{6}H_{5}CH_{2} - N - C_{6}H_{5} + 1e \longrightarrow$$

$$CH_{3} CH_{3} CH_{3} + C_{6}H_{5}CH_{2} + C_{6}H_{5}N: (50)$$

$$CH_{2} CH_{3} + CH_{3}$$

(7) J. S. Mayell, Ph.D. Thesis, The University of Texas, 1962.

 ⁽⁵⁾ S. Karp, M.S. Thesis, Polyteenine Institute of Brooklyn, 1960
 (6) S. Karp and L. Meites, J. Am. Chem. Soc., 84, 906 (1962).

Nov., 1962 VAPOR PRESSURE OF SULFUR TRIOXIDE AND THE WATER-SULFUR TRIOXIDE SYSTEM 2179

$$C_{6}H_{5}CH_{2} + H_{2}O \text{ (or } CH_{3}CN) \xrightarrow{k_{1}} C_{6}H_{5}CH_{3} + OH \cdot \text{ (or } CH_{2}CN \cdot \text{)} \quad (51)$$

$$C_{6}H_{5}CH_{2} + C_{6}H_{5}CH_{2} \longrightarrow C_{6}H_{5}CH_{2}CH_{2}C_{6}H_{5}$$
(52)

 $OH \cdot (or CH_2 CN \cdot) + 1e \longrightarrow$

$$OH^-$$
 (or CH_2CN^-) (53)

Some experimental points obtained during the controlled potential coulometric reduction of benzyldimethylanilinium bromide are plotted in Fig. 6, and indicate a ratio of rate constants for reactions 51 and 52 of about 10^{-8} . Details of this work will be presented elsewhere.²

Because controlled potential coulometry allows the unequivocal determination of n_{app}^{0} , independent of estimations of diffusion coefficients, electrode areas, and transfer coefficients, it is a valuable adjunct to other electrochemical methods in the determination of mechanisms of electrode reactions. Often, to be sure, several possible reaction schemes will lead to the same over-all behavior, and in these cases, actual observation of the reaction intermediates by such techniques as electron paramagnetic resonance spectroscopy and visible or ultraviolet spectrophotometry is necessary.

Acknowledgment.—The authors are grateful to Mr. James L. Raney for his assistance in computer programming and operation. Appreciation is expressed for support of this work to the National Science Foundation (No. G 14478).

VAPOR PRESSURE STUDIES OF SULFUR TRIOXIDE AND THE WATER-SULFUR TRIOXIDE SYSTEM¹

By J. H. Colwell² and G. D. Halsey, Jr.

Department of Chemistry, University of Washington, Seattle 5, Washington

Received April 17, 1962

The vapor pressures of liquid and γ -SO₃ (trimeric form, m.p. 16.86°) have been determined in an all-glass apparatus. The vapor pressure of the so-called β -SO₃, which is only formed in the presence of >10⁻⁵ mole fraction of water, also is reported. Vapor pressure and melting point studies of the H₂O-SO₃ system are reported in the range of 0.8 mole fraction SO₃ upward. The solutions so formed solidify at constant temperature to form a solid solution of the same composition as the melt. A syneresis upon standing for several weeks was observed in the 0.999 mole fraction SO₃ sample.

Introduction

In the gas³ and liquid⁴ phases, SO₃ has been shown, by spectroscopic studies, to be an equilibrium mixture of monomer and trimer. Liquid SO_3 freezes at 16.8° to an ice-like solid (γ - SO_3) which has been shown by X-ray diffraction studies⁵ to be entirely trimeric. There are two other solid modifications of SO₃, α - and β -SO₃, which are high polymers. α -SO₃ is an amorphous appearing solid and β -SO₃ consists of needle-like crystals.

Crystals of β -SO₃ occur only when small quantities of water are present in samples of SO_3 . One may assume that these crystals consist of polysulfuric acid molecules and several investigators through the years have proposed that β -SO₃ is a hydrate,⁶⁻⁸ which amounts to the same thing.

Smits and Schoenmaker⁹ found the vapor pressure of mixtures of liquid and β -SO₃ to be the same

(1) This research was partially supported by the Air Force Office of Scientific Research of the Air Research and Development Command.

(2) Eastman Kodak Company Fellow, 1959-1960. Based in part on a thesis submitted by Jack H. Colwell in partial fulfillment of the requirements for the Ph.D. degree at the University of Washington, 1961.

(3) R. W. Lovejoy, J. H. Colwell, D. F. Eggers, Jr., and G. D. Halsey, Jr., J. Chem. Phys., 36, 612 (1962).
(4) H. Gerding and W. J. Nijveld, Rec. trav. chim., 59, 1206 (1940).

(5) R. Westrik and C. H. MacGillavry, ibid., 60, 794 (1941).

(6) R. Weber, Pogg. Ann., 159, 313 (1876); Ber. deut. chem. Ges.,

19, 3185 (1886).

(7) A. Berthoud, Helv. Chim. Acta, 5, 513 (1922).

(8) V. R. Grau and W. A. Roth, Z. anorg. allgem. Chem., 188, 123 (1930).

(9) A. Smits and P. Schoenmaker, J. Chem. Soc., 125, 2554 (1924).

as that of pure liquid SO₃. Furthermore, they¹⁰ found that by careful distillation, the liquid could be removed from such samples, which left the β - SO_3 apparently unaffected. The vapor pressure of this form was lower than that of liquid SO₃, but above 31° the β -SO₃ slowly melted to a liquid having the same vapor pressure as pure liquid SO_3 . From this observation it was concluded that β -SO₃ was a more stable form below 31°, and that water acted only as a catalyst for the transformation from liquid to β -SO₃.

In the present study, the vapor pressures of liquid, β -, and γ -SO₃ were redetermined; the vaporization process of β -SO₃ was studied; and the vapor pressures and melting points of the H₂O-SO₃ system from 80 to 99.9 mole % SO₃ were determined systematically.

Experimental

 SO_3 was obtained by degassing 20% fuming H₂SO₄. This was accomplished by bubbling helium through the acid while heating at $120-140^{\circ}$ under reduced pressure and condensing the evolved SO_3 in a liquid nitrogen trap. The SO₃ then was distilled under vacuum several times to remove any H₂SO₄ carried over. These distillations were conducted at $23-25^{\circ}$ with the vapor being condensed at 20° . Samples obtained in this way consisted entirely of liquid Samples obtained in this way consisted entirely of liquid SO_3 with no needles of the β -form appearing upon standing. The samples of SO₃ used by several other investigators were "dried" with P_2O_5 . It has been reported,⁹ however, that such samples exhibited abnormally high vapor pressures. This phenomenon was reinvestigated¹¹ and attributed to the

(10) A. Smits and P. Schoenmeker, ibid., 1108 (1926).

(11) J. H. Colwell, Ph.D. Thesis, University of Washington, 1961.