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b An electroanalytical method for 
studying electrode reactions, called 
cyclic chronopotenticmetry, in which 
the applied current is successively 
reversed a t  each t,*ansition, is pro- 
posed. A circuit for carrying out 
automatic current reversals is  de- 
scribed. T h e  equations for the suc- 
cessive transition times for linear dif- 
fusion in a singie clmponent system 
have been derived and solved, and 
t h e  theorciical resdts have been 
confirmed experimentolly. 

YCLIC VOLTAMMETRY (cv) is a useful C technique for studying electrode 
reactions (4). By repeatedly reversing 
the direction of a potential sweep and 
observing the current , electrode reac- 
tions of both the original electroactive 
substance, and various electroactive 
intermediates m d  products, can be 
studied. Unfortunately a quantitative 
description of this method is not avail- 
able; the prevailing mass transfer con- 
ditions a t  the electrode are sufficiently 
complex that an equaiion for even the 
first potential sweep c,tnnot be written 
in closed form, and the task of obtaining 
quantitative relations for the subsequent 
sweeps wems very diificult. We pro- 

pose a method, cyclic chronopotenti- 
ometry (CC), in which a constant cur- 
rent is alternately reversed at potentials 
taken a t  the transition times of the 
various waves. The information obtain- 
able by this technique is similar to that 
of cyclic 1 oltamnietry, but the mathe- 
matical treatment is simpler, primarily 
because the tot21 flux a t  the electrode 
surface a t  any time is constant and 
known. Application of some recently 
discussed techniques of the mathemati- 
cal treatment of chronopotentiometry 
(6, 8) allows a relativelj fimple solution 
of the equations of intere\t. 

A cyclic (iironopotentiogram for the 
nitrol eneerie SJ stem is shown in Figure 
1. T11e corre-ponJiiiy CY of nitroben- 
eerie u d e r  31ichtly diircrcii t ( onditions, 
ha. ai-o beer, flescribed ( 6 ) .  The reduc- 
tion of nitrolicnzene in acidic. aqueous 
solutiuiis ha- been sho\vn to occur by 
the follen ing mechanim ( 6 , s ) .  

First (reduction) scan: 

(1) CiHbN02 + 4e + 4H + -L 

H 
CiHr NOH + Hz0 

First reversal (oxidation) scan: 

(2)  
H 

CsHr NOH - 2e -+ CsHr NO + 2H + 

-- 20 S E C .  ---+ * 

Figure 1 , Cyclic chronopotentiogram of nitrobenzene 
Solution contained 0.5M KHSC)r, 1.5M H~SOI, and 2.5mM nitrobenzene. 
per  sq. cm. 

Current density was 0.370 ma. 

Second reversal (reduction) scan: 
(3) CeHs NO + 2" + 2e -+ 

H 
CsH' NOH 

(4) CsHsNOn + 4e + 4H + 4 

H 
CsHINOH + H20, etc. 

The usefulness of repeated reversals: 
as opposed to a single reversal ( 8 ) ,  is 
evident. As in CY, the curves are 
easily compared with one another, and 
the appearance of new intermediates- 
e.g., nitrosobenzene-is readily ob- 
served. However, these curves are 
amenable to quantitative treatment, 
even when complicating chemical re- 
actions occur. 

The present paper will be concerned 
with the instrumentation for CC and 
with the theoretical treatment of a 
single oxidation-reduction system, with 
no kinetic complications. Subsequent 
communications will describe more com- 
plex systems. 

EXPERIMENTAL 

The basic chronopotentiometric in- 
strumentation and cells were of a con- 
ventional design. Mercury pool and 
platinum electrodes, both shielded for 
linear diffusion, were used. The solu- 
tions, a t  room tempwature, (23' =k 
1' C.), were deaerated for a t  least 15 
minutes with prepurified nitrogen. 

dthough the current can be reversed 
manually a t  the proper potentials, the 
reproducibility of reverbal is improved 
by using B trigger circuit which auto- 
matically revvraes the current when 
the potential reaches preset cathodic 
and anodic limits. The relatively sim- 
ple circuit used to perform this re- 
versal shown in Figure 2 is based on 
a triode amplifier and relay. The suc- 
cess of the ciicuit depends upon the 
fact t1:at the current needed to throw 
a sendiLt. relay is reproducible and 
that the drift in the triode character- 
istics is 50 small that elaborate stabil- 
ization measures are unnecessary. Bas- 
ically, the circuit is similar to the one 
used t,, rrverse u motor in CV when a 
microswitch is contacted and released 
(1);  in this case the tubes and relays 
act as the microswitches. 

The operation of this circuit is as 
follows. Initially the relays are in the 
positions shown in Figure 2. V 1 is 
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biased such that as the working elec- 
trode potential becomes negative (with 
respect to the reference electrode) the 
grid of V 1 becomes more positive, 
causing the current in the coil of RL 1 
to increase. At the preset cathodic 
limit potential the current becomes 
large enough to cause RL 1 to close, 
causing RL 2, RL 3, and RL 4, to 
close and latch. RL 3 reverses the 
current, and RL 2 shorts the coil of 
RL 1, causing it to reopen. The action 
of RL 1 is then momentary (acting as a 
microswitch). V 2 is biased such that 
when the working electrode becomes 
more positive (with respect to the ref- 
erence electrode) the grid of V 2 
(normally conducting) becomes more 
negative, decreasing the current in the 
coil of RL 5 .  When the potential 
reaches the preset anodic limit, the 
current in RL 5 decreases enough to 
allow RL 5 to release, unlatching RL 2, 
RL 3, and RL 4. The electrolysis 
curreut again reverses; RL 4 shorts the 
2.7-K. resistor in the plate circuit of 
V 2, causing the plate current to in- 
crease, and allowing RL 5 to close 
again, setting the circuit back to its 
initial conditions, in anticipation for 
the next reversal. The action of RL 5 
is also momentary. The rather in- 
volved shorting procedure is necessary 
because of hysteresis in the relay action; 
that is the relays close and release a t  
diff’erent coil currents. RL 1 and RL 5 
contain auxiliary poles (not shou-n) 
that can be used t o  activate circuits for 
automatic measurement of transition 
times, 

This circuit has the advantage of 
being inexpensive and stable and can 
be used to measure transition times 
where the potential is varying rapidly; 
the switching time is about 30 mseconds. 
The switching potentials, stable to 
within A10 mv., were set before each 
series of trials with a potentiometer. 
The shorting double-pole, double-throw 
switch in the input shorts the input of 
the triodes when the leads are dis- 
connected, and tends to make the circuit 
more stable. 

THEORETICAL 

Cyclic chronopotentiornetry is a spe- 
cial case of chronopotentiometry with 
programmed step current impulses, 
which has been treated theoretically by 
several authors. Testa and Reinmuth 
(8) solved Fick’s law equations, using 
the Laplace transform, to  obtain a gen- 
eral solution for step current impulses, 
and gave experimental results for a 
single current reversal (with a change in 
current magnitude possible). Murray 
and Reilley (5) introduced the “re- 
sponse function additivity” principle, 
which greatly simplifies the mathemati- 
cal treatment of new chronopotentio- 
metric problems, especially those involv- 
ing multicomponent systems and cur- 
rent variations. The equation for cal- 
culating the transition times for a multi- 
component system for an arbitrary 
current program is [(6) Equation 631. 

I N  

I O U T  I C U R R E N T  

- pu I p u  l ’  

RL3 L i 
45” R--------- 
ri’ T 

Figure 2. Schematic diagram for automatic current reversing circuit 

V 1 ,  V 2 ,  12AU7A; R l  1 ,  R l  2 ,  R L  3 ,  R L  4, R L  5, Sensitive d.c. relays, 6.3 ma., R405-2-AS-2K( l ) ,  Iron 
Fireman Mfg. Co., Portland, Ore. 

n7nFD,1’2[Com - Cm(O, t ) ]  = 
m 

c 2, (0 ,  t - tP) (1) 
P 

where C”, is the initial concentration of 
the mth species, and C, (0, t )  is its 
concentration at the electrode surface 
a t  time t, Z,(O, t-t,) is the current im- 
pulse response function, and the other 
symbols have their usual meanings. 
Murray and Reilley presented this equa- 
tion by an essentially intuitive and 
empirical approach. Since this valuable 
relation will be used in this and subse- 
quent communications, we have re- 
derived this equation rigorously (Ap- 
pendix I). 

We consider here the case where only 
a single oxidation-reduction system 

O + n e & R  ( 2 )  

is present, with initial concentrations of 
Coo and COR, respectively. Semi-infi- 
nite linear diffusion and constant current 
densities, i R e d  and iox are assumed. 
Although the following treatment is 
given for an initial reduction, followed 
by reversals of current, the final results 
apply equally well t o  an initial oxida- 
tion. At the first transition time, TI and 
all successive odd-numbered transitions 
(reductions), the concentration of 0 
a t  the electrode surface, C, ( O , T ) ,  is 
zero, and Equation 1 becomes: 

where 

For all even-numbered transitions 
(oxidations) , 

CR (0, T) is  zero, and 

. . . Tn)’’z - R(T.2 f . . . Tn)”*+ 

. . . R( T n ) ’ ” ]  (5) 

These equations can be rearranged into 
a more convenient form using the 
following: 

where a,, is the nth transition time, T ~ ,  

relative to T ~ ,  (for example, for the well 
known case of the first reversal, a, = 
I/$). Equations 3 and 5 become 

n = 3, 5, 7 
1 = (a1 + uz + . . . U”)1’2 - 

n = 2 , 4 , 6  . . .  
R ( u ~  + . . . + . . . R(an)”* (8) 

R(a2 + . . . u p  + . . . R ( a p  (9) 

Where ul = 1, and values for a2, a 3 .  . . 
a, can be obtained by solving (8) and 
(9). Since these equations can only be 
solved by an iterative method for n 
greater than 2, a program for generating 
Equations 8 and 9, and solving them for 
successive values of a,,, on a digital 
computer was prepared (Appendix 11). 
Some computed values of a,, assuming 
DE = Do, for different R’s and C 0 ~ / C 0 o  
ratios are listed in Table I. 

1 122 ANALYTICAL CHEMISTRY 



Figure 3. Cyclic clironopotentiograms of reduction of 
silver( I )  and cadmium1 I t )  
Upper curve. Solution coitained 1.71 mM cadmium(ll) and 0.1 M KCI. 

Current density was 0 . 3 7 0  ma. per sq. cm. at  mercury pool 
electrode. 

Lower curve. Solution contained 9.8mM rilver(1) and 0.2M KNOa. Cur- 
rent density was 0.865 ma. per sq. cm. at  platinum disk 
electrode. 

When the reduced species is insoluble 
and plates onto the elxtrode, the even- 
number an’s (oxidations) are calculated 
by the equation: 
n = 2, 4, 6 

while the odd-numbered an’s are still 
calculated by (8). Some computed 
values for an’s under these conditions 
are also listed in Table I. 

To give a physical Ficture of the con- 
centration gradients during CC, con- 
sider the case where C ” R  = 0, and iox = 
in.d. During the first reduction CO 
(z = 0) decreases to zero at 71. On 
reversal, R produced during the first 
transition diffuses back to the electrode, 
and when C E  at the electrode surface is 
zero, 72 = ~ ~ / 3  (or a2 = l /a ) .  At this 
point Co (z = 0) is essentially equal to 
the bulk concentration of the oxidized 
species, Coo. However, as we move 
away from the electrode surface, we find 
that the concentration profile for the 
oxidized species shon s a dip before 
again assuming its bulk value. There- 
fore, the transition time for the next 
reduction, 73, is smaller than that ini- 
tially. For additiona scans, the odd 
scans continuously dwrease and the 
even scans increase. 

For the case of an insoluble product 
the analysis is slightlj, different. The 
transition time for the second scan is 
exactly the same as the first, because the 
reduced product has n i t  diffused away 
from the electrode surface. Since dur- 
ing this second scan, ox.dized species dif- 
fused toward the ele4rode from the 
bulk of the solution, the amount of 
oxidized material in the vicinity of the 
rlectrode a t  the secona transition time 
is larger than that initially present, and 
hence r3 will be larger than T ~ .  For 
additional scans, the transition times 
continually increase, vith every even 
transition time equal to  the preceding 
odd one. 

RESULTS AND DISCUSSION 

The theoretical resu ts were experi- 
mentally verified by performing CC on 
three systems. The reduction of cad- 
mium(I1) in 0.131 potassium chloride 
a t  a mercury electrode, forming cad- 
mium amalgam, and the reduction of 
iron(II1) in 0 . 2 N  potassium oxalate a t  a 
mercury electrode illu:,trate processes 

in which the products of the electrode 
reaction are soluble either in the solution 
or the electrode. The reduction of 
silver(1) in 0.2M potassium nitrate a t  a 
platinum electrode is a process in which 
the electrode reaction product plates on 
the electrode. Typical cyclic chrono- 
potentiograms, employing automatic 
current reversal, are shon-n in Figure 3. 
Some typical values for a,, for the dif- 
ferent systems, as well as the theoretical 
points, are shown in Figure 4. The 
agreement between experiment and 

theory was quite good in all cases. 
Deviation from theory a t  higher n- 
values is probably due to convection, 
since transition times were usually be- 
tween 10 and 20 seconds’ duration (3). 
Sote  that even in the experiments with 
the shielded platinum electrode of the 
proper orientation for a single scan 
(diffusion upward) the concentration 
of silver ion in the vicinity of the elec- 
trode becomes higher than in the bulk 
of the solution during the second scan, 
causing density gradients and convec- 

Table I. 

n 
I 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Relative Transition Times for Cyclic Chronopotentiometry under Various 
Conditions 

R Insoluble 
Both 0 and R Soluble 

i R e d  = i O x  i R e d  = 2.414i0, i p d  = i o x  
C O R  = 0 C O R  = 0 c R = coo i R o d  = % O x  

an 
1 .ooo 
0.333 
0.588 
0.355 
0.546 
0.366 
0.525 
0.373 
0.513 
0.378 
0.504 
0.382 
0.498 
0.385 
0.493 
0.388 
0.489 
0.390 
0.486 
0.392 

a, 
1.000 
1.000 
0.729 
1.124 
0.698 
1.184 
0.684 
1.222 
0.675 
1.249 
0.670 
1.269 
0.665 
1.286 
0.662 
1.298 
0.659 
1.309 
0.657 
1.318 

an 
1.000 
1.778 
1.713 
1.740 
1.724 
1.735 
1.727 
1.733 
1.728 
1.732 
1.728 
1.732 
1.729 
1.732 
1.729 
1.731 
1.729 
1.731 
1.730 
1.731 

an 
1.000 
1.000 
1,174 
1.174 
1.263 
1.263 
1.319 
1.319 
1.359 
1.359 
1.390 
1.390 
1.414 
1.414 
1.434 
1.434 
1.450 
1.450 
1.464 
1.464 
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tion. The experimental arrangement is 
currently being modified to allow CC 
with much shorter transition times to 
be carried out. 

CC for a single system alloms tranqi- 
tion time data a t  a given current density 
to be collected rather rapidly, without 
repeatedly waiting for the solution to 
come to rest after each trial and subse- 
quent stirring, subject to limitations due 
to convection. On the other hand, 
hopes that later transitions will give 
correct values even if initial ones are 
perturbed, for example by accidental 
stirring, are unfounded. If the first 
reversal was high, all subsequent scans 
were high, and 1‘ we-versa. 

The preceding treatment assumed 
that the system was chemically (but not 
necessarily electrochemically) reversible. 
Information concerning the electro- 
chemical reversibility of the electrode 
reaction can be gained by the usual 
comparisons of potentials on the various 
scans. Subsequent communications n ill 
deal with kinetic and catalytic effects 
and multicomponent systems. 

APPENDIX I 

Proof of the Murray-Reilley “response 
function additivity” principle. 

Current Response Functions. 
Using Fick’s equation for linear dif- 
fusion, and the usual initial boundary 
conditions for CO, the following equation 
can be derived (7) 

CO(0, t )  = c o o  - 
[ ~ L F ( H D O ) ” ~ ]  -1 ir(e)(t - e)-l/*de 

(la) 

where ii(t) is an arbitrary current 
function, and 0 is a dummy variable of 
the integration. A general current pro- 
gram, in which the current undergoes 
step functional changes a t  time tl t2,  
etc., is 

i,(t) = io(t) + 

Sd 

sfl( tYl(t)  + 
StZ(t)h(t) + . . . (2a) 

where S K ( ~ )  is the step function, equal 
to zero when t is between 0 and K ,  and 
equal to one when t is larger than K .  
Therefore 

Co(0, t )  = 

( t  - e)-’/*de + 

i 

0.8 1 ’, 

1 5  IO 15 20 
n 

Figure 4. Theoretical and experi- 
mental relative transition times for cyclic 
chronopotentiometry 

- - - -  theoretical values 
1 reductions, insoluble product 
2 reductions, soluble product 
3 oxidations, soluble product 
0 silver(1)-silver metal system 
0 cadmium(ll)-codmium amalgam system 
0 iron(lll)-iron(ll) system 

si-“ F(X)dX =sK F ( t  - 8 ) d 0  = 
t 

when t > K (4a) 

(letting h = t - e) (3a) becomes 

Co(0, t )  = c o o  - 

[ n F ( ~ D ~ ) l / 2 ]  -1[Ji io(i - ~ ) h - l W h  + 

il(t - h)X-”* dx + 

This can be rewritten as 

nFDo”Z[C”o - Co(0, t ) ]  = 

Zo(0, t )  + Zl(0, t -t1) + 
Zz(0, t - t 2 )  + . . . (6a) 

Where 

ZP(0, 1 - tP) = 

[Reference (6), Equation 31 ] 
and are the Murray-Reilley current im- 
pulse response functions for linear dif- 
fusion. 

Note that for constant currents, 

iP(t - A )  = B P  (84 

2 p p ~ - 1 ’ 2 ( t  - tp)ll* (sa) 

which yields Equation 38 in (5) 

Surface Concentration Response 
Functions. For a multicomponent 
system, the total current can be rep- 
resented by a sum of the instantaneous 
currents due to each species, 

ij(t) = [b l ( t )  + M t )  + . . .I iAt)  (loa) 

where bl(t)  is the fraction of the total 
current a t  time t causing electrolysis of 
species 1, etc. Then from (la), for 
species m 

C,(O, 1 )  = corn - 
[nmF(n-Dm)1/21 -lJ( bm(e)ide) 

( t  - e)-l”de (11a) 

or summing over j species 

m-1 

(12a) 
or, using (loa), 

m-1  

T -1/sJi i,(e) ( t  - e)-lwe (134 

Combination of this equation with the 
results for the current response function 
above, leads to Equation 1. Equation 1 
was essentially proved by Testa and 
Reinmuth (8), using different notation, 
for constant currents. The proof given 
here demonstrates that the equation 
also holds for step-functional changes 
with varying (programmed) currents as 
well. 

APPENDIX II 

Computer Program for Generating 
and Solving Equation for CC of 
Single Component System. The 
writing and solving of Equations 8 and 
9 is quite difficult, since the nth equa- 
tion contains n terms, and cannot be 
solved explicitly for (I,,. The following 
Fortran 60 program is designed to gener- 
ate the equations and solve for the var- 
iousa,’s. The following data are read in: 
K the total number of reversals desired, 
NOSIG, the number of significant 
figures desired in a,, ( i R s d  + ioT)! 
kcd(RR), and C0o/Co~ (FRACT) and 
a, [ T ( n ) ]  - values are calculated 
and printed, for n’s of 1 to K .  
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c 1  

C 

10 

60 

80 

81 

95 

CYCLIC CHELONO, DIFPU- 
SION CONTROLL, PLANE 
ELECTRODE, READ IN K 
NOSIG RR FRACT, TWO 
SOLUBLE ElPECIES 

READ 900,K,NOSlG, RR, 

DIMENSION X (100) ,T (1 00) , 
FRACT 

R(100) 

TIONS 
DO200N = 1,K 
T(N) = 0.0 
M = l  
LA = 0 
DO 80 I = 1,N 
SUM = 0.0 
DO 60 J = I ,N 
SUM = SUM -- T(J)  
X(1) = SQRTF(SUM) 
CONTIXUE 
Y = X(1) - 1.13 
I F  (1 - pu’) 81,96,300 
SIGN = 1.0 
DO 95 L = 2,N 
SIGN = -SIGN 
Y = Y + SIGN * RR *X(L) - 

SIGN - S I a K  * FRACT 

GENERATION OF EQUA- 

c 2  

96 
100 

102 
98 
99 
71 

7 3  

199 
200 

c 3  

201 

500 
900 
901 

902 

SOLVE GENERATED EQUA- 
TION BEGIN AT 96 READ 
I N  NOSIG FOR ACCURACY 

IF(M- 1)300,100,102 
Z = Y  
M = M + l  
IF (Z) 98,200,99 
IF (Y) 71,200,73 
IF (Y) 73,200,71 
T(N) = T(N) + 10.0 **(-LA) 
GO TO 10 
T(N) = T(K) - 10.0 **(-LA) 
L A = L A + I  
IF (NOSIG - LA) 300,200,71 
CONTIXUE 
EQUATION SOLVED PRINT 

ANSWER 
DO201 J = 1,K,2 
R(J) = T(J)/T(J + 1) 
PRINT 903, RR, FRACT 
PRINT 901 
PRINT 902, [S,T(K),R(N), 

K = 1.K1 
CONTIkUE 
FORMAT (2110, 2F10.5) 
FORMAT [4(3X, lHN, 6X, 

4II TAU, 5X, 5HRATIO)//] 
FORMAT [4(1X, 113,2F10.6)/] 

903 FORMAT (5HRR =, F10.5, 
8HFRACT =, F10.5) 

GO TO 920 
300 PRINT905 
905 FORRSAT (2X,5HEItROR) 
920 STOP 

EXD 
END 

(1) Alden, J. 
R. N., J .  
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High Speed Controlled Potential Coulometry 

ALLEN J. BARD 
Department of Chemisfry, The University of  

b An electrolysis cell for rapid con- 
trolled potential coulometric determi- 
nations, employing a large electrode 
area-to-solution volume ratio and using 
ultrasonic and nitrogen stirring, was 
designed. This cell allowed deter- 
minations to be performed with total 
electrolysis times of less than 100 
seconds. The apparcitus was tested 
by determining silver ( I )  and iodide by 
electrodeposition of silver and silver 
iodide, respectively. From 2.5 to 
25 pmoles of each was determined 
with an average error of 2 to 0.270. 
The application of t7is cell to the 
study of mechanisms of electrode 
reactions was also considered. 

ONTROLLED potential coulometry C has been useful both as an ana- 
lytical technique and for the investiga- 
tion of mechanisms of electrode re- 
actions. The time required to perform 
a controlled potential determination is 
usually hetween 20 miniites and 2 hours, 
dqiriidiiig upou tlir c.qxrirnonta1 ap- 
I l:Lr:i t I IS f?mj Iloyed. h l  t l~ough ContIolled 
potential coulometric analysis has the 
advantage of being an rabsolute method 
-Le., allowing the direct determination 
of the quantity of a substance without 

Texas, Austin, Texas 

reference to calibration curves, etc.-the 
long electrolysis times usually required 
sometimes discourage potential users of 
this technique. The aim of this study 
was to consider the factors governing the 
speed of an electrolysis, and to design a 
cell capable of performing a controlled 
potential coulometric analysis in a short 
time. 

For a single electrode reaction carried 
out a t  potentials a t  which the rate of the 
reaction is limited by the rate of mass 
transfer of the electroactive species to 
the electrode, the current decays ac- 
cording to the equation (7) 

i t  = ;&-P’ (1) 

where it is the current a t  time t ,  6 is the 
initial current, and p is a function of the 
electrode dimensions, solution volume, 
cell geometry, and rate of mass transfer. 
For a simple Nernst diffusion layer 
model of convection, p is given by the 
expression 

p = DA/6V (2) 

wlitve z) is the diffusion coeflicient of 
the electroactive species, d is the elec- 
trode area, V is the total solution vol- 
ume, and 6 is the thickness of the diffu- 
sion layer. The actual dependence of p 
upon these variables is very complex, 

and depends upon such experimental 
conditions as electrode shape, cell 
geometry, and turbulence of flow. It is 
probably better to write simply 

where m is a mass transfer constant. 
There is frequently no direct propor- 
tionality between p and A; the dimen- 
sions of the electrode, rather than the 
area, are more important (3). Com- 
pletion of electrolysis is generally taken 
a t  the time when the current has de- 
cayed to 0.1% of its initial value, that is 

t = 6.9/p (4) 

To decrease the electrolysis time, p must 
be made as large as possible. In this 
study an electrolysis cell was designed 
with a large electrode area-to-solution 
volume ratio, which employed ultra- 
sonic and nitrogen stirring. With this 
cell 811 “effective p” of about 0.1 
second-’ was obtained, so that elec- 
trolysis times were only slightly longer 
than one minute. 

EXPERIMENTAL 

Apparatus. Ki th  a suitable po- 
tentiostat and coulometer, the design 
of the electrolysis cell usually governs 
the electrolysis time. After experi- 
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