Solution Redox Couples for Electrochemical Energy Storage

II. Cobalt(III)-Cobalt(II) Complexes with o-Phenanthroline and Related Ligands

Yih-Wen D. Chen, K. S. V. Santhanam, and Allen J. Bard*

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712

ABSTRACT

Co(III) and Co(II) complexes with o-phenanthroline, bipyridine, and related ligands were examined by voltammetric and coulometric techniques in aqueous H$_2$SO$_4$ media to investigate their suitability as redox couples for electrochemical energy storage systems and semiconductor photoelectrochemical cells. The Co(II) complex undergoes a rapid (k$^+$ \sim 10$^{-8}$ cm/sec) one-electron oxidation at a graphite or platinum electrode to yield the Co(III) complex. With several ligands both forms of the couple are very stable and show formal potentials shifted very negative (to \sim0.1V vs. SCE) from that of the aquo-Co(III)/Co(II) couple.

In a previous paper (1) we outlined past work in the area of redox flow cells and some of the requirements of soluble redox couples for use in such cells. These generally include high solubility, rapid charge transfer rates at the electrode surface, high stability of both forms of the redox couple, and, especially for photoelectrochemical cell applications, stabilization of the electrode materials. The previous study (1) dealt with the Fe(III)/Fe(II) couple and its characteristics in aqueous solutions of o-phenanthroline (phen), bipyridine (bpy), and related ligands. In this paper we describe a parallel investigation of the Co(III)/Co(II) couple.

The electrochemical behavior of various bidentate complexes of Co has been investigated before, especially in connection with the determination of the

* Electrochemical Society Active Member.

Key words: battery, voltammetry, solubility, chelates.
reversibility of the electrode reactions, in the determination of the stoichiometry of the complexes, and in voltammetric determinations (2-6). The electrochemistry of cobalt and its compounds is reviewed in detail by Maki and Tanaka (7). Because the redox potential of the uncomplexed Co(III)/Co(II) species in aqueous solution is high, and estimated at near 1.9 V vs. NHE (7), Co(II) cannot be generated from the +4 species without simultaneous evolution of oxygen. However, \(\pi \)-bonding ligands such as phen or bpy complex the +3 form more strongly and shift the potential of the couple in a negative direction. This is consistent with the stronger complexation of the \(d^6 \) (lig) form by \(\pi \)-bonding ligands, which for Co occurs in the +3 state (8, 9). Note that for iron the \(d^6 \) state is \(+2\) so that the potential of the Fe(III)/Fe(II) couple is shifted in a positive direction by complexation with these ligands, as discussed previously (1). Moreover, as described below, both the +2 and +3 forms of the Co complexes are quite stable and appear suitable for redox battery applications.

Experimental

Reagents.—1,10(or o-)phenanthroline (phen), 2,9-dimethylphenanthroline (2,9-dmp), 4-methylphenanthroline (mp), and 4,7-dimethylphenanthroline (4,7-dmp) were obtained from Alfa Chemicals. The other chemicals used in this study were 2,2'-bipyridine (bpy) (Aldrich Chemical); tripyridine triazine (tp) (T. Baker Company); CoSO\(_4\)·7H\(_2\)O, reagent grade (Matheson, Coleman and Bell). All solutions were prepared with distilled water and were degassed with prepurified nitrogen.

Apparatus.—A Model 173 potentiostat in combination with a Model 173 digital coulometer (Princeton Applied Research Corporation, Princeton, New Jersey) was employed for all electrochemical experiments. The i-E and Q-t curves were recorded on a Houston Instruments Model 2000 X-Y recorder.

Procedure.—The details of the procedures employed in the present studies have been described previously (1). The solutions were purged with nitrogen gas before use. The complexes were prepared directly in the electrochemical cell by mixing known concentrations of cobalt(II) sulfate and the ligand. A mol ratio of ligand/Co(II) of greater than 3 was used.

Controlled potential electrolysis was carried out with a large area graphite sheet electrode (area, 6.5 cm\(^2\)) (Ultra Carbon, Sherman, Texas) with continuous nitrogen bubbling. All potentials in this study are reported with respect to an aqueous saturated calomel electrode (SCE). For cyclic voltammetric investigations, a single compartment cell with a solution capacity of 5 ml was employed, with either a platinum disk \((A = 0.114\) cm\(^2\)\) or graphite rod \((A = 0.12\) cm\(^2\)\) working electrode. The platinum electrodes were pretreated by fast pulsing between +1.0 and −1.0 V in H\(_2\)SO\(_4\).

Results

Solubilities.—Table I is a list of the estimated solubilities of the complexes in aqueous 0.5M H\(_2\)SO\(_4\). Uncomplexed Co(II) and Co(III)-sulfate salts are quite soluble and yield solutions with metal ion concentrations ~1M. The solubilities of the complexes are ~1M and yield deeply colored solutions. The ligands are soluble in acidic media to ~2M.

E\(^{\circ}\) values.—The formal potentials \((E^{\circ}) \) of the various Co(II)/Co(III) complexes were evaluated from the cyclic voltammetric peak potentials at low scan rates (Table II). Note that the \(E^{\circ}\)-values for these complexes are all shifted negatively by large amounts from the aquo Co(III)/Co(II) couple potential. Similar observations were reported by Farina and Wilkins (11) in potentiometric studies of complexation with \(\pi \)-bonding ligands at 0°C.

Table I. Solubilities of cobalt(II) complexes and ligands\(^*\)

<table>
<thead>
<tr>
<th>Substance†</th>
<th>Solubility (g/100 ml)</th>
<th>Concentration** (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoSO(_4)·7H(_2)O</td>
<td>28.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Co((\text{phen})_2)SO(_4)</td>
<td>69.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Co((\text{bpy})_2)SO(_4)</td>
<td>63.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Co((\text{mp})_2)SO(_4)</td>
<td>83.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Co((\text{mpd})_2)SO(_4)</td>
<td>73.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Co((\text{4-dmp})_2)SO(_4)</td>
<td>Insoluble</td>
<td></td>
</tr>
<tr>
<td>Co((\text{4,7-dmp})_2)SO(_4)</td>
<td>8.09</td>
<td>0.1</td>
</tr>
<tr>
<td>1,10-Phenanthroline</td>
<td>40.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2,2'-Bipyridine</td>
<td>31.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Terpyridine</td>
<td>44.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

* Measured at 0.5M H\(_2\)SO\(_4\) and at room temperature.
† Abbreviations for the ligand names are indicated in Table II.

At a hanging mercury drop electrode (HMDE), another reversible peak at −1.20V was observed with solutions of higher pH values (~6) (Fig. 1). This wave is attributed to the Co(II)/Co(I) complex (10). The insolvency of the Co(I) complex results in deposition of a blue compound on the electrode and produces a sharp peak on the anodic scan. The blue-black solid of Co(I) triisbipyridyl perchlorate was previously prepared by an electrochemical method (10).

Cyclic Voltammetric Measurements

Electron transfer kinetics.—Cyclic voltammetry (cv) was employed to estimate the heterogeneous electron transfer rate constants (12, 13) and to ascertain the stability of the coordinated Co(II) and Co(III) species. The results are given in Table II. Since the heterogeneous electron transfer rate constants, \(k^* \), are moderately large (> \(10^{-3} \) cm/sec), at low scan rates, \(v \), the electrochemical behavior is characteristic of a nernstian reaction. When \(v \) is increased, the peaks shift and an increase in the \(\Delta E_p \) values (\(E_{p+} - E_{p-} \)) is observed, indicating the effect of the finite heterogeneous electron transfer rate (11, 62 J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY January 1982
Table II. Thermodynamic and kinetic constants for cobalt(III/II) couples

<table>
<thead>
<tr>
<th>Ligands</th>
<th>E^{a} (V vs. SCE)</th>
<th>k^* (cm sec$^{-1}$)</th>
<th>k_2 (sec$^{-1}$)</th>
<th>D ($\times 10^6$ cm2/sec)</th>
<th>Abbreviation of ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquo</td>
<td>1.9</td>
<td>1.4 $\times 10^{-7}$</td>
<td>$<10^{-7}$</td>
<td>1.8</td>
<td>bpy</td>
</tr>
<tr>
<td>Bipyridine</td>
<td>0.063</td>
<td>0.81 $\times 10^{-9}$</td>
<td>$<10^{-9}$</td>
<td>1.1</td>
<td>phen</td>
</tr>
<tr>
<td>4-Methyl-o-phenanthroline</td>
<td>0.04</td>
<td>0.52 $\times 10^{-9}$</td>
<td>$<10^{-9}$</td>
<td>0.49</td>
<td>mp</td>
</tr>
<tr>
<td>4,7-Dimethyl-o-phenanthroline</td>
<td>0.015</td>
<td>0.28 $\times 10^{-9}$</td>
<td>$<10^{-9}$</td>
<td>0.48</td>
<td>4,7-dmp</td>
</tr>
<tr>
<td>5-Nitrophenan~hroline</td>
<td>0.37</td>
<td>1.8 $\times 10^{-9}$</td>
<td>3.2 $\times 10^{-9}$</td>
<td>1.5</td>
<td>np</td>
</tr>
<tr>
<td>4-Methyl-o-phenanthroline</td>
<td>0.04</td>
<td>0.52 $\times 10^{-9}$</td>
<td>$<10^{-9}$</td>
<td>0.49</td>
<td>mp</td>
</tr>
<tr>
<td>4,7-Dimethyl-o-phenanthroline</td>
<td>0.015</td>
<td>0.28 $\times 10^{-9}$</td>
<td>$<10^{-9}$</td>
<td>0.48</td>
<td>4,7-dmp</td>
</tr>
<tr>
<td>5-Nitrophenan~hroline</td>
<td>0.37</td>
<td>1.8 $\times 10^{-9}$</td>
<td>3.2 $\times 10^{-9}$</td>
<td>1.5</td>
<td>np</td>
</tr>
<tr>
<td>Tripyridine</td>
<td>0.018</td>
<td>1.3 $\times 10^{-8}$</td>
<td>$<10^{-7}$</td>
<td>1.7</td>
<td>tp</td>
</tr>
<tr>
<td>Tripyridinetriazine</td>
<td>0.73</td>
<td>Irreversible</td>
<td>$<10^{-7}$</td>
<td>---</td>
<td>tpt</td>
</tr>
</tbody>
</table>

* Measurements were made in 0.5M H$_2$SO$_4$ at platinum working electrode.

† $E_{pa} = 0.25V$, $E_{pa} = 0.45V$ at $v = 0.01$ V/sec.

‡ Adsorption might occur.

12). The rate itself can be obtained from the variation of E_{pa} or ΔE_p with v using the methods developed by Nicholson (13). From the $E_{pa} - v$ behavior (assuming $\alpha = 0.5$), the value of ψ can be determined, where $\psi = k^*\chi (aDc)^{1/2}$, $\alpha = nFv/RT$, and D_c is the diffusion coefficient of the complex. The diffusion coefficients of the Co(II) and Co(III) complexes were determined by chronocoulometry at a platinum disk electrode ($A = 0.114$ cm2). For a planar electrode, the cumulative charge passed in oxidizing the diffusion reactant is given by (14)

$$Q = 2nFAD_{1/2}C_r^{1/2}t^{1/2} + Q_{dl} + nFA_{r}$$ \[1\]

where Q_{dl} is the double layer charge and nFA_{r} is the faradic charge required to oxidize an amount, Γ_r, of adsorbed R. A typical plot of Q vs. t and $t^{1/2}$ is illustrated in Fig. 2. Diffusion coefficients, determined from the slopes of the Q vs. $t^{1/2}$ plots, are listed in Table II. The larger intercepts of the Q vs. $t^{1/2}$ plots found with the ligands mp and 4,7-dmp suggest that adsorption occurs in these cases. By substituting the relevant D-values into the above ψ expression, k^* was obtained. For example, in a typical study with the Co(II)-tp complex in 0.5M H$_2$SO$_4$, the E_{pa} wave showed an $E_{pa} = +0.000$V and on scan reversal E_{pc} was -0.028V at $v = 10$ mV/sec. When v increased, ΔE_p increased and at $v = 50$ mV/sec, ΔE_p was 115 mV; $v = 0.1$ V/sec, ΔE_p was 125 mV and $v = 0.2$ V/sec, ΔE_p was 150 mV. From these values, an average value of $k^* = 1.5 \times 10^{-3}$ cm/sec was obtained.

The electron transfer rates of several of these Co-complexes have previously been measured in neutral media using a rotating platinum disk electrode. For Co(phen)$_2^{2+}$, a value of 4.8×10^{-3} cm/sec (15) and for Co(bpy)$_2^{2+}$, a value of 7.7×10^{-3} cm/sec (16) have been reported in 1M KCl medium. These values are an order of magnitude higher than in 0.5M H$_2$SO$_4$. This difference can probably be ascribed to the counterion and pH of the medium. The values of k^* for Co(III/II) couple in 0.5M H$_2$SO$_4$ in the absence of added ligand could not be obtained, since the oxidation of the aquo Co(II) occurs beyond the background discharge potential.

The short-term stability of the complexes also could be obtained from the cv scans. The cyclic voltammetric curves of Co(II) complexes showed an initial anodic peak and a complementary cathodic peak arising from the reduction of Co(III) complex (see Fig. 3a, 4, and 5). During the duration of the sweep, the Co(III) complexes were highly stable. The stability of Co(II) complexes was investigated by examining the cv curves after waiting periods of several hours following formation of the complex; no decom-
Fig. 3b. Cyclic voltammetric curve of the product of exhaustive electrolysis of Co(phen)$_3^{2+}$ conducted at graphite working electrode.

Fig. 4. Cyclic voltammetric curve of 10 mM Co(np)$_3^{2+}$ in 0.5M H$_2$SO$_4$ at graphite working electrode. $v = 0.10$ V/sec.

position of the complexes as evidenced by a decrease in i_{pa} was noticed. This stability can be contrasted to the behavior observed with several of the same Fe(III) complexes (e.g., np) where appreciable decomposition of the complex occurred, even on the cu time scale.

Controlled potential coulometric (CPC) measurements.—The stability for longer periods and current efficiency in the electrochemical oxidation-reduction processes were investigated by controlled potential electrolysis techniques. The oxidation of the Co(II) complexes, carried out at $+0.40$V beyond the E_{pa} (from cu at low v) showed an n_{app} (faraday/mol) of 0.99-1.0. The lower values of n_{app} were found at higher concentrations (0.2-0.5M) of the complex and can be attributed to some loss of the electroactive material because of diffusion into the counterelectrode compartment during the long term (1-2 hr) electrolysis. The current decayed smoothly to the background value and a plot of log i vs. t was linear (17). The product of the electrolysis, the Co(III) species, was examined by cu after different waiting periods. For example, the results in Fig. 3b demonstrate the stability of Co(phen)$_3^{3+}$; the magnitude of the cu peak current before and after electrolysis was identical, for waiting periods of at least 4 hr.

Reversal electrolysis, reduction of the electrolytically generated Co(III), consumed essentially the same number of coulombs as in the forward electrolysis; the potential of the electrode was maintained at -0.10V during these experiments. Repetitive electrolysis, cycling between the oxidized and reduced forms four times at 1 hr intervals, produced similar results (see Table III). With complexes of mp and tptz adsorption or some precipitation of the Co(III) complex on the electrode results in faster decay of the current and in-

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Q_c (C)</th>
<th>Mol of Co$^{2+}$ (oxdn)</th>
<th>Q_c (C)</th>
<th>Mol of Co$^{2+}$ recovered (redn)</th>
<th>n_{app} (faraday/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(bpy)$_2$</td>
<td>3.40 x 10$^{-4}$</td>
<td>3.1 x 10$^{-4}$</td>
<td>3.45 x 10$^{-4}$</td>
<td>0.95**</td>
<td></td>
</tr>
<tr>
<td>Co(np)$_2$</td>
<td>3.44 x 10$^{-4}$</td>
<td>3.1 x 10$^{-4}$</td>
<td>3.45 x 10$^{-4}$</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Co(tpd)$_2$</td>
<td>3.47 x 10$^{-4}$</td>
<td>3.1 x 10$^{-4}$</td>
<td>3.45 x 10$^{-4}$</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

* ml solution in 0.5M H$_2$SO$_4$.
** Diffusion of Co(II) complex to the counterelectrode compartment occurs.
complete electrolysis, presumably due to formation of an insulating film.

A brief investigation of the electrochemical reduction of the Co(II) complexes was also undertaken to see if the Co(II)/Co(I) couple is a possible candidate as the negative couple in a redox battery. The reduction of these complexes was examined in near neutral solutions of K₂SO₄; exhaustive electrolysis at a graphite electrode at −1.10V resulted in a blue deposit on the electrode; this deposition caused a rapid decay of the electrolysis current (Fig. 6). Reversal electrolysis at −0.30V removed the blue deposit from the electrode with the consumption of a smaller number of coulombs than for the forward electrolysis. In a typical electrolysis of 12.4 mM Co(phen)₃²⁺ in 0.5M K₂SO₄ (15 ml) at a platinum electrode, a Qₚ = 1.10C and a Qₚ = 0.18C was reached. A similar result was obtained when a graphite electrode was used (Qₚ = 20.2C and Qₚ = 3.2C). These results demonstrate that a large fraction of the Co(II) complex is lost through a chemical reaction. The Co(bpy)₃²⁺ complex exhibited similar behavior. At a graphite electrode, exhaustive electrolysis at −1.10V, of 0.9 mM Co(bpy)₃²⁺ consumed Qₚ = 23.8C and a film formed on the electrode. Reversal electrolysis at −0.30V consumed Qₚ = 0.25C. On the basis of these results, we conclude that the Co(I) complex is unstable and decomposes to a form which is not readily oxidizable.

Stability of Co(III) species.—Since a primary condition in the development of a storage battery is the long-term stability of the redox species in the two oxidation states, the Co(III)-complex stability was also studied spectrophotometrically. A solution of 10 mM Co(III)-phen complex with an absorption maximum at λₘ₉₀ nm (ɛ₉₀ = 90 M⁻¹ cm⁻¹), showed no change in absorbance in 0.5M H₂SO₄ for at least 2 days. The rate of decrease in intensity showed that k₁ was less than 10⁻⁷ sec⁻¹ (where k₁ is the first-order rate constant for disappearance of the species). A similar k₂ value was found with tp (λₘ₈₅ nm, ɛ = 421 M⁻¹ cm⁻¹). The +3 complex with np was kinetically less stable, however, and showed a k₂ = 3.1 × 10⁻⁴ sec⁻¹. This enhancement in the rate of decomposition by at least three orders of magnitude is possibly due to the presence of electron withdrawing groups in the ligand.

The stability of Co(II) complexes has been investigated previously (18-20). The equilibrium constants for these species favor formation of the complex. For example, for Co(phen)²⁺, K = 2 × 10⁷ (Eq. [2])

\[
\frac{k'_f}{k'_d} \approx \frac{K'_f}{K'_d} \tag{2}
\]

The decomposition of Co(II)-phen complex proceeds with a kₚ = 1.5 × 10⁻² sec⁻¹ while the rate of complexation in the reaction proceeds with a kₚ = 3.1 × 10⁻⁴ sec⁻¹. The rate of complexation is generally of this order of magnitude with several of these ligands.

The stability of Co(II) complexes also depends, however, on the presence of O₂ in the medium. If O₂ gas is bubbled through a solution of 10 mM Co(II)-phen in 0.5M H₂SO₄, the cv peak at Eₚ₈₃ = 0.13V decreases with time and on continuous bubbling of O₂, Co(II)-phen is converted to Co(III)-phen (Fig. 7). In preliminary experiments we found that the conversion of the Co(II) to Co(III) proceeded as a pseudo first-order reaction with a k = 1.0 × 10⁻⁴ sec⁻¹. This conversion has also been followed using a rotating disk electrode; the limiting currents in the cv curves are proportional to the concentration of the electroactive species (Fig. 8). The rate of conversion of Co(bpy)₃²⁺ was followed by this procedure and gave a pseudo first order k = 3.6 × 10⁻⁵ sec⁻¹.

The near complete complexation of Co(II) with ligands like phen and bpy has been substantiated from equilibrium studies (21, 22). With phen, the equilibrium constants for the successive additions of the ligand are K₁ = 10⁶, K₂ = 10⁹, and K₃ = 10¹⁵. The ligand addition reactions with bpy show K₁ = 10⁶, K₂ = 10⁹, and K₃ = 10¹⁴. In this respect, the Co(II) complexes compare very well in stability with Fe(bpy)₃²⁺, where K₁ = 10⁶, K₂ = 10⁹, and K₃ = 10¹⁵ (23).

Discussion

Complexes of Co(II)–Co(III) appear to satisfy many of the general requirements of an energy storage redox couple. The stability of the complexes in the two oxidation states is remarkably high and the heterogeneous transfer rates at graphite electrodes appear adequate. Of course, more extensive studies under very long-term cycling and an economic evaluation would be required before such couples could be con-

![Fig. 6. Current-time curve during exhaustive electrolysis in 10 mM Co(phen)₃²⁺ at graphite electrode in 0.5M K₂SO₄ with its potential controlled at −1.10V during reduction and reversal electrolysis at −0.30V.](image)

![Fig. 7. Oxidation of 10 mM Co(phen)₃²⁺ by oxygen: (a) concentration changes during continuous oxygen bubbling, (b) plot of log C/C₀ vs. t.](image)
present studies suggest Co complexes are potentially useful, employing the Co(III)/Co(II) and Co(II)/Co(I) systems. These have the advantage of both being single electron transfer systems and indeed, the biological redox system involving Vitamin B12 involves, at least formally, these redox states. However, the results with the ligands employed here show that the Co(II) species, even in neutral media, were not sufficiently stable for this application. Alternate ligands are under investigation.

Acknowledgment

This work was supported by a subcontract from Texas Instruments, under TI/DOE cooperative agreement DE-FC01-79ER10,000.

Manuscript submitted March 6, 1981; revised manuscript received ca. June 15, 1981.

Any discussion of this paper will appear in a Discussion Section to be published in the December 1982 JOURNAL. All discussions for the December 1982 Discussion Section should be submitted by Aug. 1, 1982.

Publication costs of this article were assisted by The University of Texas.

REFERENCES