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» Cyclic chronopotentiometry is ap-
plied to mathematically equivalent
cases—multicomponent systems and
stepwise reactions in a single com-
ponent system, The equations for the
successive transition times have been
derived and solved. The reduction
of a mixture of lead cnd cadmium ions
and the stepwise reduction of copper
ion at a mercury pool electrode con-
firmed the theoretical calculations.
The theoretical results were used to
calculate the half-wave potential on
each scan of a single component system
and the reduction of lead ion was used
to confirm these results.

CONSTANT CURRENT chronopotenti-
ometry was first applied to a multi~
component system and a stepwise re-
action by Berzins and Delahay (1, 8).
The following cases were treated with
linear diffusion conditions being as-
sumed.

Maulticomponent system

A+ newB (1)

CH+ne=D 2)
Stepwise reaction

A4+ mee=B 3

B+ me=C 4

These authors derived the flux after
the transition time of the first com-
ponent, 7, and used this to calculate the
flux and subsequent transition time of
the second species. The derivation was
extended by Kambara and Tachi (7) to
an arbitrary number of reducible
species.

Similar results have been derived for
cylindrical electrodes (77) and for
current varying with the square root of
time (6). Murray and Reilley (9) have
shown how these results, and many
more, can be derived from the surface
concentration response function ad-
ditivity principle. A proof of the re-
sponse function additivity principle has
been presented (4).

The application of step functional
changes in current to multicomponent
systems has been treated by Testa and
Reinmuth (73) and experimentally

verified by them. Palke, Russel, and
Anson (10) have derived the equation
for the first transition time, after re-
versal of current, in a two-component
system. Their results were confirmed
with several systems. Murray and
Reilley (9) have shown how these re-
sults can also be derived through the
use of their current response function
additivity principle.

Cyclic chronopotentiometry (CC), a
special case of programmed current
chronopotentiometry where the con-
stant current is reversed at each
transition time, has been applied to
single-component systems with both
diffusion control (4) and with sub-
sequent chemical reactions (§). The
method was shown to be experimentally
convenient and to give more informa-
tion than methods involving only a
single transition time measurement or
one reversal of current.

In this paper, the method is applied
to multicomponent systems and step-
wigse reactions, Theoretical equations
for cyclic chronopotentiometry were
derived using the response function
additivity principle and were solved for
the actual transition times with a
computer. The theoretical results were
confirmed experimentally. In addition,
the suggestion (10) that for a single
component system the half-wave
potential after each reversal can be
calculated from the transition times for
a multicomponent system has been
verified.

EXPERIMENTAL

The instrumentation for CC has been
described (4, §). The transition times
were taken from the recorded potential-
time curves. The odd-number transi-
tion times were taken at the point
where the curve became linear, and the
even numbered ones, from the point of
reversal. The potential axis of the
recorder was expanded to about 0.4
volt for accurate half-wave potential
measurements.

The solutions were made up approxi-
mately from aliquots of previously
standardized stock solutions and were
at room temperature (25° =+ 1° C.).
Prepurified nitrogen was used to
deaerate solutions for at least 15
minutes.

THEORETICAL

Multicomponent Systems. Theo-
retical equations for cyclic chrono-
potentiometry on a muiticomponent
system are conveniently derived using
the Murray-Reilley (9) response func-
tions. This is mathematically ex-
pressed as

D naFD 2[00 — Cn(0, )] =
2208 = t) (3)
»

where C,° is the initial concentration
of the mth species, C(0, ¢) is its con-
centration at the electrode surface at
timet, Z,(0, t — t,) is the current impulse
function, and the other symbols have
their usual meaning. This expression
is derived from the fact that the sum of
the instantaneous currents caused by
each species is equal to the applied cur-
rent function. Using the zero shift the-
orem of the Laplace transformation (2),
it can be shown that (4)

ZP(O, t - tp) =
I f Pl — AT (6)
0

When a constant current, 7, = 8, is
applied, the integral in Equation 6
takes the form

Z,(0,t — tp) = 287712t — t;)V2 (7)

Consider the reduction of a two-
component system corresponding to
Equations 1 and 2 in a solution con-
taining A and C, at concentrations of
0.° and Cg° respectively, with no B
and D present, where 4 and C are
reduced at sufficiently different poten-
tials to yleld a potential-time curve
exhibiting two distinct steps. At
the first transition time, =, C.(0,
71) = 0. Thus, Equation 5 becomes

K4 Cs° = 712 (8)
where
1/2,..1/2
K, = Mﬂu_ (9)
2zud

The symbols have their usual meaning;
1 is the current density.
At the second transition time, 7,
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Cc(0, 72 = 0. Thus, Equation 5 now
becomes

KeCo® + KuCy® = (ri+ )2 (10)

At the third transition time, 73, the
first reversal

C4(0, 75) = 0, C° = 0,
and Cn(0, 75) = 0.
Thus Equation 5 becomes
Ki€s® = (n+ m+ )t — Rot?
11)

where R equals the change in current,
(freg + Tox)/trea. When the reversal
current is equal and opposite to the

Table |. Relative Transition Times for

Cyclic Chronopotentiometry of Two-

Component System or Two-Step Reac-
tion of Single Component

(All species soluble and reduced forms
initially absent)

an

’L.red = 7.red = 7’red = 'l.rzd =

'L.oz 7.0:: iom 2/5'0:
KaCs® KaCa® KcCc® KaCs®
KoCe® 2KcCc® 2KaC4°® KcCc®
or ny or n, or nsy or ny

n N2 2n, 2n, N2
1 1.000 1.000 1.000 1.000
2 3.000 1.250 8.000 3.000
3 0.28 0.068 1.204 0.577
4 1.047 0.682 1.796 2.623
5 0.375 0.440 0.322 0.561
6 1.977 0.882 4.970 2.246
7 0.207 0.070 1.260 0.611
8 1,123 0.728 1.933 2.941
9 0.361 0.417 0.315 0.545
10 1.822 0.811 4.597 2.126
11 0.301 0.071 1.288 0.623
12 1.162 0.752 2.004 3.100
13 0.355 0.407 0.312 0.538
14 1.747 0.776 4.418 2.070
15 0.304 0.071 1.305 0.634
16 1.187 0.768 2.051 3.201
17 0.351 0.400 0.310 0.534
18 1.701 0.754 4.308 2.035
19 0.306 0.071 1.317 0.639
20 1.206 0.779 2.085 3.273

Table Il. Time for Potential of Single
Component System to Equal Polaro-
graphic Half-Wave Potential

(Time is expressed as a ratio of rs)

(tn/Tn)E-Ellz

‘ired =
Tred = Ured = Tred = 1.333

n Ton 200z 4ios Tox
1 0.250 0.250 0.250 0.250
2 0.215 0.180 0.136 0.202
3 0.159 0.200 0.225 0.178
4 0.209 0.172 0.126 0.195
5 0.165 0.204 0.228 0.183
0.206 0.168 0.121 0.192
0.160 0.206 0.220 0.186
0.204 0.165 0.118 0.189
0.171 0.208 0.230 0.188
10 0.203 0.163 0.116 0.188
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forward current, B equals 2. At the
fourth transition time, Cz° = 0, (s
(0, T4) = 0, Cp° = 0, and CD(O, 7'4) =
0; thus Equation 5 becomes
O=(n+rn+rn+ i —

B(rs + 791 (12)

This process is continued in a similar
manner for the subsequent transition
times. The general equations are:

n=11509...
KiCl® = (n+m+ .. .1 —
RB(rs+ ...r)¥?+ ... + Rr V2 (13)
n=2610...
K4Cs® + KcCo® = (11 +
ot o) =R+ T2+
coo Tt Rrar + 1)V (14)
n=3711...
Kils® =(n+rnt . .74 —
R+ ...7)12 4+ ... — Rr, 2 (15)
n=42_812...
O=(n+mrn+ . .79~
R+ ..r)i24 ... —
R(ro—1 + 7)1 (16)

As Testa and Reinmuth (73) pointed
out, the third transition time is unusual;
species A4 is reduced during an oxidation
scan and the third transition time is
abnormally low.

These equations can be shown to be
independent of the first transition time
by making the substitution a, = 7./m,
as was done in a previous communication
(4). TFor example, the general transi-
tion time equations now become n =
1,3,5...

l=(as+a+ ...0)" —
Ra; + ...a)¥? + ... R@@)V? (17)

n=2610....

1+ KcCc®/KiCs®

n=4,812... -
0

(a4 as+ ...a,)Y2 —
Ras+ ...a)V?2 4+ .. . R(guy + an)'?
(18)

The Fortran computer program used
in the numerical solution of these
equations is listed in Appendix I
Table I gives the values caleulated for
various values of KoCc°/K4C4° and R.
The overall reduction and oxidation
scans reduce to the diffusion controlled
relative transition times for one species
(4). Thus (as + as/(a + ay) = 1/3.
This program is not useful for treating
a single component system by setting
K Cc°/K 4C4° equal to zero. Because
of the finite number of significant figures

calculated, a small negative transition
time may be obtained under these
conditions which cannot be handled by
the program.

Stepwise Reactions. The theoret-
ical treatment of a stepwise reaction
is essentially identical to that of the
multicomponent system (10). A proof
of this statement is shown in Appendix
II. In Equation 18, the general equa-
tion for the relative transition times,
KCc°/K404° is replaced by no/ni.
The same computer program can then
be used to caleulate the transition times
for a stepwise reaction of a single species
(Table I).

Half-Wave Potentials. It has also
been stated (70) that the polarographic
half-wave potentials of a single com-
ponent cyclic chronopotentiogram—
that is, the potential when D'2,,C,.
0, ty = Dv*,,C,.q40, t)—can be cal-
culated from the transition times of a
two-step reaction when n; = n;. The
half-wave potential of any scan occurs
at the relative time calculated from the
relationn = 1,2, 3. . .

(/T E=F12 = Qan—1/{Qan—1 + O2r)
(19

where the a’s are caleulated from the
stepwise reaction case where n; = 7.
A proof of Equation 19 is shown in
Appendix III. Table IT gives the values
of (t./rn)e_ry2 for equal forward and
reverse currents and other cases. For
the first reversal, the results agree with
the values calculated from the exact
equation derived by Macero and Ander-
son (8).

RESULTS AND DISCUSSION

The theoretical results for the multi-
component system were confirmed for
the reduction of a mixture of lead(II)
and cadmium(II) ions at a mercury
electrode; the products, metallic cad-
mium and lead, are soluble in the mer-
cury. A typical cyclic chronopotentio-
gram is shown in Figure 1. The experi-
mental results are tabulated in Table
III and compared with the theoretical
calculations. The overall transition
time ratios followed the simple diffusion
case previously discussed (4). The
observed first and second transition
times were used to calculate K C¢°/
K.,Cs° (FRACT) using the relationship

KCo®/KiC4° = (1 + a)l? — 1
(20)

This value was then used to calculate
the theoretical transition times ratios
for comparison with the experimental
results. Deviations from the theoretical
results became noticeable after sixty
seconds, probably because of convection.

In one series of experiments involving
lead and cadmium in & chloride medium,



the solubility produzt of lead chloride
was inadvertently exceeded. Although
the first four transitions were apparently
normal, the fifth and subsequent re-
versals deviated from the theoretical
caleulations.  This ability to notice
deviations points to one advantage of
cyclic chronopotentiometry; errors and
effects that might remain unsuspected
when chronopotentiometric techniques
involving only a single reversal are
applied become apparent in CC,

The theoretical results for the step-
wise reaction system were confirmed
experimentally for the reduction of
copper(II) ion in an ammoniacal
medium on & mercury pool electrode.
In this medium, copper(II) is reduced
in two steps, first to copper(l) and then
to the metal. Both copper(l) and
copper(II) ions arz soluble in the
solution and copper metal is soluble in

E vs SCE.

AN

Figure 1. Cyclic chronopo-
tentiogram for the reduction
of a lead(ll) and cadmiumlll)
mixture., Conditions are the
same as in Table lli

20 30
TIME-SECONDS

the mercury. The experimental results
and comparison with the calculations
for m; equal to n, (FRACT = 1) are
shown in Table IV.

A cyclic chronopotentiogram for the
reduction of lead(II) jon in 0.05M
nitric acid was used to measure half-
wave potentials to confirm the results in
Table II. Three forward scans on a
mercury pool electrode at a current

Program in Fortran 40

CYCLIC CHRONO, MULTIPLE COMPONENT SYSTEM, PLANE ELECTRODE,

C DIFFUSION CONTROL, TWO SOLUBLE SPECIES, NO REDUCED FORM

DIMENSION X(100}), T(100}, R{100)
READ 900, K, NOSIG, RR, FRACT
C GENERATION CF EQUATIONS
DO 200N = 1,K
T(N) = 0.0
M =1
LA=0
10 DO80I=1,N,2
SUM = 0.0
DO &0 J = I, N
40 SUM = SUM + T(J)
X{1) = SQRTFSUM)
80 CONTINUE
Y = X(1) - 1.0
IF(2 — N) 81, 33,96
81 SIGN = 1.0
DO95L = 3,N,2
SIGN = —SIGN
95 Y = Y -+ SIGN * RR * X{L}
IF (XMODF(N, 2)) 300, 31, 96
31 IF (XMODF(N, 41) 300, 32, 33
32 Y=Y+1.0
GO TO 96
33 Y =Y — FRACT

96 IF(M — 1) 300, 100, 102
100 Z=Y
M=M+1
102 IF(Z) 98, 200, 99
98 1F(Y) 71, 200,73
99 IF(Y) 73, 200, 71
71 TIN) = TIN) + 10.0 **(—LA)
GO TO 10
73 T{N) = T(N) — 10.0 *¥*{—LA)
LA =1A+1
199
200 CONTINUE
EQUATION SOLVED PRINT ANSWER
DO 201 J = 1,K, 2
RU) = TH/TUN 4 TU + 1)
PRINT 903, RR, FRACT
PRINT 901
PRINT 902, (N, T(N), R(N), N = 1, K)
CONTINUE
FORMAT (2110, 2F10.5)

201

500
900
901
902
903

FORMAT (4{1X, 113, 2F10.6)/)

GO TO 920

PRINT 905

FORMAT (2X, 5HERROR}
STOP

END

END

300
905
920

SOLVE GENERATED EQUATION BEGIN AT 96 READ IN NOSIG FOR ACCURACY

IF ((T(N})/10.0%#(—LA)) — 10.0 **{NOSIG)) 71, 200, 200

FORMAT (4(3X, 1HN, X, 4H TAU, 5X, SHRATIO)//)

FORMAT (5HRR =, F10.5, 8HFRACT =, F10.5)

Table 1ll. Relative Transition Times
for Cyclic Chronopotentiometry of
Two-Component System: Lead(ll) and
Cadmiumlil)

(Solution contained 5mM lead(Il), 3.4
mM cadmium(II), 0.1M HCIO,, and 0.05M
HNO;. Current density was 1.00 ma. per
square cm. at a mercury pool electrode. 71
was 5.2 seconds)

ax (individual) an (overall)

n Exp. Theor. Exp. Theor.
1 1.00 (1.00) 1.00 1.00
2 1.66 (1.66)
3 0.11 0.11 0.3¢4 0.33
4 0.77 0.78
5 0.40 0.42 0.57 0.59
6 1.12 1.15
7 0.13 0.11 0.35 0.36
8 0.79 0.83
9 0.38 0.40 0.54 0.55
10 1.04 1.05
11 0.13 0.11 0.36 0.37
12 0.82 0.86
13 0.37 0.39 0.53 0.53
14 1.03 1.01
15 0.12 0.11 0.36 0.37
16 0.84 0.88
17 0.38 0.38 0.53 0.51
18 1.04 0.98
19 0.11 0.12 0.38 0.38
20 0.89 0.89
Table V. Relative Transition Times
for Cyclic Chronopotentiometry of

Copper{ll) Undergoing Stepwise Reac-
tion
(Solution contained 5 mM copper(Il)
chloride, 0.1 NH,Cl, and 0.1 NHs.
Current density was 0.68 ma. per square
em. at a mercury pool electrode. T, was
5.7 seconds)

a, (individual) an (overall)

n Exp. Theor. Exp. Theor.
1 1.00 (1.00) 1.00 1.00
2 3.01 3.00
3 0.27 0.29 0.34 0.33
4 1.08 1.05
5 0.37 0.38 0.58 0.59
6 1.97 1.98
7 0.30 0.30 0.36 0.36
8 1.16 1.12
9 0.36 0.36 0.55 0.55
10 1.85 1.82
11 0.28 0.30 0.37 0.37
12 1.20 1.16
13 0.36 0.36 0.53 0.53
14 1.78 1.75
15 0.28 0.30 0.38 0.37
16 1.24 1.19
17 0.36 0.35 0.53 0.51
18 1.79 1.70
19 0.29 0.31 0.38 0.38
20 1.25 1.21
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density of 0.7 ma. per square cm. gave
a half-wave potential of —0.402 volt
=+ 1 mv., and three reverse scans gave
a potential of —0.397 volt £+ 1 mv,,
vs. S.C.E. indicating the correctness
of the theoretical calculations. The
small disparity between the potentials
found on forward and reverse scans can
be explained by an apparent resistance
of about 1 ohm between the reference
electrode tip and the working electrode.
Alternately, a small amount of ir-
reversibility could explain the difference.
For the first scan of a reversible reaction
in chronopotentiometry the following
equation holds:

Esyy — By = 0.048/n volt  (21)

The measured value for lead ion in this
medium was 0.026 volt, which is close
to the value 0.024 volt calculated by
Equation 21.

APPENDIX |

Computer Program for Generating
and Solving Equations for CC of a
Multicomponent System, Stepwise
Reaction of a Single Component, and
Time Corresponding to Half-Wave
Potential on Each Scan of a Single
Component System, This program in
Fortran 60 generates and solves the
equations for the various relative
transition times. The following data
are read in: K, the total number of
reversals desired, NOSIG the number of
significant figures desired in @., (¢,,a +
20z)/ted  (RR), and KcCo°/K4C4° (or
ny/n )} (FRACT). The output prints the
values of a,[T(n)] and the ratio ({,/
T”) Ew=E1/2 [R (n) ]. If the reduced
form of substance A (substance B) is
present, add a term to statement 32
corresponding to the ratio DpV2Cp°/
D120 40,

Also note that in a previous com-
munication (4) FRACT should read
C0°/Cg®, rather than as given there.

APPENDIX 1l

Proof of Murray-Reilley Surface
Concentration Response Function for
the Stepwise Reaction of a Single
Component. If a substance A4 reacts
according to the following scheme

A+ me—B (1a)
A+ (n1 -+ ’ﬂz)e —-C (23/)
B+ ne—C (3a)

the instantaneous currents eaused by
reactions la to 32 can be defined as
u(@), 12(f), and ?3(¢), respectively. For
example, the special case where the two
steps are distinet, 41(f) = 1,(¢) and %:(f) =
13(t) = 0,for 0 < { < 71, where 7,(t) is the
total applied programmed current. For
< 11 S T2 il(t) = 0 and ig(t) and ?::;(t)
are complicated functions of time.
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The equations that describe the flux
of A and B are

D 4(0C 4/0%) 4o = 4 ({t)/mF +
2(t)/(m + na)F (4a)
Dp(0C5/0%) sma = —u(t)/mF +
i3(t)/mF  (5a)

With the Laplace transformation, the
following equations can be derived for
the surface concentrations of species
4 and B:

Ci(0,8) = C4s° — [mF(Dum)2]t X
f L) @ = 0 ds —
0

[t + o) F(Dam)i2] f " ae) x
0 ==
(t—6)~v2ds (6a)

Cs(0,t) = [mF(Dsm)¥?]1 j;t 1u(6) X

(¢t — 8)~Y2dg — [mF(Dsx) 2]t X
fo “a®) -0 ds (Ta)

Multiplying Equation 6a by (n + ng) X
FD,2 and Equation 7a by n.FDgl/e,
adding, rearranging, and using the fact
that ‘L.f(t) = 1:1(t) + ig(t) -+ 'L.g(t) gives

(m + m)FD.V2C.° — Cu(0, )] —
n,F D 2Cs(0, t) =

—n ﬁ) ‘@) -0 ds (8a)

The results can be expanded to multi-
step reactions by adding additional
terms to the fluxes and surface con-
centrations of A and B corresponding
to the extra steps, and by writing ex-
pressions for the flux and surface con-
centration of any other intermediates.
Again, the individual currents must add
up to the applied value. The extension
to multiple current reversals and other
programmed currents is made by using
the current response function prineiple
on the right side of Equation 8a, as in
Appendix I in (4). A similar proof for
constant current chronopotentiometry
in a three-step reaction has been given
by Testa and Reinmuth (12).

APPENDIX 1l

Proof of Equivalence between Step-
wise Reaction Calculations Where
n1 = ns, and Time Corresponding to
Half-Wave Potential of Each Scan
in a One-Component System. To
show that the half-wave potential on
the kth scan of a single component
system occurs at the time ¢ calculated
by the expression & = 1, 2,. . . n,

[te/Telz=E12 = Qar—1/(@2r—1 + a2) (9a)

where t;, is measured from the previous
transition time, 7 is the transition time
of the kth scan, and the a’s are the
relative transition times of a stepwise
reaction.

In a one-component system, the half-
wave potential occurs at the time where

Dl/zazca=<01 t) = Duzradond(o, t) (103)

The response function additivity
principle permits writing the following
equations for any time, {,, on the nth
scan when 4,4 = 1,, and C,° = 0
K.,,C.,,(O, t) = 1'11/Z - (T1 + T2 +
o)V A 2(m 4 L)Y L 2t
(11a)

Kﬂdcud(oy t) = (Tl -+ T2 + . -tn)1/2 bl
2(ry + .. ta)V2 L 28,92 (123)
Equating 12a and 1la using 10a,
dividing by 7:!/2, and rearranging gives
1= [4(01 “l"‘ [+7] + . ..A")]1/2 -
2[d(a. + .. A2 4+ L 2[4(A) ]2
(13a)
where a’s are the relative transition
times and 4,(t,/m1) is the relative time
at which the half-wave potential occurs
in the nth transition.
By making the following substitutions

into Equation 13a, a result equivalent to
the stepwise reaction is obtained:

k=12 ...n—1

dar = ap—1' + an' (14a)
and k=n
44, = a1’ (15a)
yields
k=1,2,...n
1= (a'+a’'+ ...600-1)V2 —
2@ + .. aea-1)VE AL 200,12
(16a)

Equation 16a has the same form as
Equation 17 for a stepwise reaction.

The relative transition times for a
single component system with no Cg
present and 4,,4 = %,. has been shown to
be [Equations 8 and 9in (4)]: n=1,2,. .

n odd, 1 ]( s
n even, 0| = (o + a+ ... 0.)" —
(178)

2(as + ...a)V: 4 ... 2a,Y7

Multiplying by 2 and substituting in
Equation 17a

k=12 ...n
dar = am—1" + au'
yields n=12 . ..
n odd, 1
= (&' + &’ +
n even, 0



coGea YV = 2(a + e )Y+
.. 2a0,"11%  (18a)

This has the same form as Equation
18 for a stepwise reaction when n;, =
no.  The simultaneous solution of
Equations 18a and 16a will give the
same results as the stepwise reaction
calculations. The substitutions that
were used to demonstrate the equivalence
between the two sets of equations are
15a and 14a. Dividing Equation 15a by
Equation 14a gives the desired relation,
Oa.

Thus, the time at which the potential

of a single component system equals the
polarographic half-wave potential can
be calculated from the relative transition
times of a stepwise reaction when
ny = Na.
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Behavior of the lodide-lodine Couple at

Platinum Electrodes

R. A, OSTERYOUNG and F. C. ANSON!

North American Aviation Science Center, Division of North American Aviation, Inc., Canoga Park, Calif,

» Certain electrochemical experiments
with the I-IT couple indicate the
presence of adsorbed iodine and the
absence of adsorbed iodide on plati-
num electrodes. Radiotracer experi-
ments prove that both iodine and
iodide are odsorbed but only the
adsorbed iodine is electroactive. None
of the previously written mechanisms
for the flow of exchange current at
platinum electrodes in  l-I" solu-
tions is compatible with the results
presented,

THE APPARENT ELECTROCHEMICAL
reversibility of the iodide-iodine
couple at platinum electrodes has
prompted a number of studies of the
mechanism of the zlectrode reaction
(18, 17, 20, 81). In several of the
studies (18, 17, 20), it is asserted that
adsorption of iodide or iodine is in-
volved, but there is a divergence of
opinion concerning the details of the
mechanism (32). In a recent study
(26), the present authors cencluded
that iodine but not iodide was adsorbed
on platinum electrodes because no
electroactivity ascritable to adsorbed
iodide could be observed. This con-
clusion was opposed to a number of
previous studies (2-4, 11, 14, 21-3, 28)
and led the authors to carry out further
electrochemical studiss and radiotracer
experiments with iodine-131 to resolve
the contradiction. The radiotracer
experiments, which were similar to
those described by Kazarinov and

! Permanent address, Division of Chem-
istry and Chemical Engineering, California
Institute of Technology, Pasadena, Calif.

Balashova (14), confirm unequivocally
that both iodide and iodine are exten-
sively adsorbed on platinum electrodes.
This result, together with the electro-
chemical experiments reported in our
previous study and the present one,
force us to conclude that although both
iodide and iodine are adsorbed on the
electrode only the iodine displays elee-
trochemical activity in the vicinity of the
reversible iodide-iodine potential.

EXPERIMENTAL

Radiotracers. Carrier-free iodine-
131 was obtained as an aqueous solu-
tion of sodium iodide from Tracer-
lab, Inc. (Richmond, Calif.).

The radiochemical counting tech-
niques followed standard practice. The
counting equipment consisted of a well-
type thallium-doped sodium iodide
crystal, and a single-channel analyzer
(R.I.D.L., Melrose Park, Iil.). The
0.33-m.e.v. gamma ray emitted by I
was the radiation that was monitored.

In agreement with Kazarinov and
Balashova (14) we observed that the
adsorption of iodide and iodine was
quite irreversible. Very little adsorbed
iodide was removed from an electrode
by thorough washing with distilled
water or sulfuric acid. Accordingly,
the amount of iodine (in all oxidation
states) adsorbed could be measured
simply by counting an electrode that
had been exposed to a solution contain-
ing I'®! and then washed free of un-
adsorbed iodide. It was also possible
to follow removal of radioactive iodine
from the electrode by counting the
electrode or, more sensitively, by
counting aliquots of the solution in
which desorption was being effected
chemically or electrochemically.

Electrochemical. Chronopotentio-
metric experiments were conventional,
although care was taken to avoid
shorting the indicator and auxiliary
electrodes during switching. When
make-before-break  mercury-wetted
relays are used to switch the constant
current from the dummy resistor to
the electrochemical cell, the indicator
and auxiliary electrodes are shorted
together for about 0.5 msecond. De-
pending on the prior history of the
auxiliary electrode, a brief current
pulse may flow between the short-
circuited electrodes thus destroying the
strictly galvanostatic conditions re-
quired for chronopotentiometric experi-
ments; various solutions to this prob-
lem have been proposed (7, 8). In the
present work a switching box utilizing
break-before-make relays was employed.
Transition times were determined by
the method suggested by Voorhies and
Furman (38). It is likely that the
better switching circuitry and the
graphical method used to determine the

Table I. Chronopotentiometric Data

for lodine Reduction

0.010F XI, 0.001F I,, 1F H,SO,
0.2 8q. cm. Pt button electrode

Current, + (cathodice), 712 pa.-
us. seconds second!/?
51 7.10 136
75 3.45 139
115 1.58 145
185 0.69 154
285 0.345 168
525 0.116 179
825 0.057 197
1325 0.0285 224
16235 0.0210 236
2025 0.0082 265
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