Polymer Films on Electrodes

XI. Electrochemical Behavior of Polymer Electrodes Produced by Incorporation of Tetrathiafulvalenium in a Polyelectrolyte (Nafion) Matrix

Timothy P. Henning* and Allen J. Bard**
Department of Chemistry, University of Texas, Austin, Texas 78712

ABSTRACT

The electrochemical behavior of the cation exchange polymer Nafion containing tetrathiafulvalenium (TTF+) on a platinum substrate is described. The polymer electrode shows cyclic voltammetric behavior similar to that of solid films of TTF on platinum. In 1.0M KBr the oxidized form of the electroactive molecules in the polymer (TTF+) forms nonstoichiometric complexes with Br-. The peak potentials in cyclic voltammetry shift with changes in concentration of supporting electrolyte, temperature, and anion of the supporting electrolyte. Very narrow cyclic voltammetric waves are observed that result in part from attractive interactions between the electroactive molecules. The separation in peak potential of the reduction and oxidation waves is explained by formation of TTFBr07, which stabilizes the oxidized form (TTF+) and makes it harder to reduce. Peak potentials for the oxidation and reduction shift closer together as the scan rate is lowered, which is explained by a "square (reaction) scheme."

The electrochemistry of layers on electrode surfaces, both solids and polymers, has been investigated by many research groups. The cyclic voltammetric behavior of the surface-confined layer frequently deviates from the theoretical "thin film" behavior of a one-electron nernstian reaction at 25°C; i.e., peak width at half-height (ΔE1/2) of 90.6 mV and no splitting between the anodic and cathodic peaks (ΔEpa = Epa - Epc = 0) (1). Relatively few films show a ΔE1/2 significantly smaller than 90.6 mV (2). These narrow cyclic voltammetric (CV) waves were attributed to interactions among the electroactive molecules and phase formation in the layer. Large peak separations observed in cyclic voltammetry at fast scan rates (1 V/sec and larger) have been attributed to slow heterogeneous kinetics and resistance effects in the layer. Even at slow scan rates, where heterogeneous kinetics and resistance usually are not of importance, finite ΔEpa values have been observed. These have been explained by kinetic effects associated with phase formation (nucleation overpotential) (2d) and interconversion between different forms of the polymer-confined electroactive molecules with different standard potentials (3).

We recently described unusual CV behavior of a polymer electrode in which tetrathiafulvalenium ion (TTF+) was incorporated into a layer of the perfluorinated sulfonate polymer, Nafion (NAF) (4). This polymer electrode exhibited narrow (ΔE1/2 < 20 mV) CV waves and ΔEpa of ~ 150 mV at intermediate scan rates (e.g., 10 mV/sec). This is remarkably similar to the electrochemical behavior of solid films of TTF. In this paper we describe more detailed studies of the electrochemical behavior of the TTF/NAF polymer electrode, examining the effects of supporting electrolyte concentration, different supporting electrolytes, temperature, and different scan rates in cyclic voltammetry. We also obtained absorption spectra of the TTF polymer on SnO2 transparent conducting electrode, which yielded information about the nature of the electroactive TTF molecules in the polymer. In a related paper the behavior of solution redox species on the TTF polymer electrodes is described (5).
Experimental

Materials.—TTF (Aldrich) was purified by several vacuum sublimations. TTFC1 was synthesized by dissolving TTF in benzene and adding dropwise a benzene solution which was saturated with chlorine. The purple TTFC1 precipitate was washed with ether and air dried. The supporting electrolytes were used as purchased. The 970 eq wt Nation dissolved in ethanol was a gift from the E. I. du Pont de Nemours & Company.

Apparatus.—All electrochemical experiments employed a Princeton Applied Research (PAR) Model 175 universal programmer, Model 175 potentiostat, and Model 176 digital coulometer. Slow potential scans (< 1 mV/sec) were accomplished by introducing a voltage divider between the programmer and potentiostat. The working electrode used in all the electrochemical experiments was a Pt disk (area = 0.027 cm2) embedded in a glass rod. A Pt mesh was used as a counterelectrode and a saturated calomel electrode (SCE) was used as a reference. Resistance compensation was used at all scan rates faster than 10 mV/sec by adjusting the amount of positive feedback just short of oscillation.

Procedure.—The electrodes were prepared by covering the Pt disk with 10 uliter of an EtOH solution of Nation (2% by weight) and allowing the EtOH to evaporate. The dry thickness of the resulting films (typically 1 µm) was determined with a Sloan Dektak surface profile measuring system. The TTF+ was incorporated into the Nation film by immersing the electrode in an aqueous solution of ~1 mM TTFC1 for 10 min. The electrode, denoted Pt/NAF,TTF+, turned a golden color after immersion in the TTFC1 solution, indicating the incorporation of TTF+. The average concentration of electroactive TTF in the electrode was typically about 0.3M as determined by the integrated charge under a steady-state CV wave.

Results

Cyclic voltammetry.—The behavior of a freshly formed Pt/NAF,TTF+ electrode in aqueous 1.0M KBr is shown in Fig. 1. The first reduction scan of the electrode to TTF produced a broad cathodic wave. The oxidation of the electrode back to TTF+ produced a sharp anodic wave which shifted toward less positive potentials with further cycling. The second reduction scan produced a sharp cathodic wave; this wave shifted very little in potential with further cycling. The Pt/NAF,TTF+ electrode, which was originally golden in color, became colorless when the film was reduced in 1.0M KBr and then purple when the film was oxidized. After about 10 cycles the anodic wave attained a constant shape and peak potential. The integrated charge under the CV waves decreased for the first 5 cycles after which the integrated charge was about half that of the first reduction and then remained essentially constant. After about 2 hr the peak currents for the CV waves slowly decreased with continuous scanning and after about 12 hr the waves had disappeared.

While the first CV reduction wave (Fig. 1) was a broad, drawn-out wave with a slowly decaying (diffusive) tail, which is characteristic of the steady state CV waves seen for other electroactive molecules bound into Nafion polymer layers (6), the subsequent oxidation and reduction waves had shapes different from those previously seen in polymer electrodes. The purple color of the oxidized form of the electrode after the first and subsequent reductions has been ascribed to the formation of a TTFBr,Br2 complex, rather than the original golden material, where the TTF+ ion is associated with the sulfonate group on the polymer. The stability of the freshly formed electrode was also very different from the electrochemically cycled electrode. When a freshly formed Pt/NAF,TTF+ electrode was taken out of the aqueous TTFC1 solution in which incorporation of TTF+ took place, the golden-colored electrode could be immersed in water at open circuit for at least one week without any apparent effect on the subsequent electrochemistry of the polymer. If the electrode was immersed in 1.0M KBr, however, colored material diffused out of the polymer into the solution. Within a few minutes the amount of electroactive TTF+ remaining in the polymer was greatly reduced over that which would have been found if the electrochemical cycling of the polymer had begun immediately. This experiment indicated that TTF+ was indeed electrostatically bound into the Nation polymer from the aqueous TTFC1 solution and the stability of the polymer in water can be attributed to the absence of cations in solution capable of exchanging with the TTF+ on the polymer sites. In 1.0M KBr, K+ can replace TTF+ on the polymer sites. Note, however, that after a few reduction or oxidation cycles, the electrode could be immersed at open circuit in 1.0M KBr in either the TTF+ or TTF form with little loss of electroactive material over 1 hr. The difference in stability between the initially formed golden TTF+ electrode and the electrochemically oxidized purple electrode in 1.0M KBr indicated that the electrochemically oxidized form of the polymer was very different from the initially formed material.

The steady-state cyclic voltammogram of a Pt/NAF,TTF+ electrode is shown in Fig. 2a. For comparison, a cyclic voltammogram for a mercuric one-electron reduction reaction showing thin layer behavior (?) with the same area under the waves is shown. This theoretical CV wave emphasizes both the unusual sharpness of the peaks and the nature of the peak separation at this scan rate. Also included in Fig. 2 is the CV of a solid film of TTF on a Pt electrode, denoted Pt/TTF. This film was formed by placing the drop of benzene containing dissolved TTF on a Pt electrode and allowing the benzene to evaporate. The similarities between the solid and polymer layers of TTF suggest that the TTF species in the polymer after cycling resembled the solid TTF and TTF+Br- phases. However, while the Pt/NAF,TTF+ electrode was reproducible and stable upon cycling for hours, the Pt/TTF electrode was less reproducible and became irreversibly oxidized in less than 1 hr of electrochemical cycling.

CV: effect of scan rate.—The CV behavior of a Pt/NAF,TTF+ electrode was studied in 1.0M KBr for scan
rates (ν) of 0.02-10 V/sec (Fig. 3-5). With increasing ν, the peak potential of the anodic wave (E_{pa}) shifts toward more positive values and that of the cathodic wave (E_{pc}) toward more negative values (Fig. 6). In investigations at $\nu < 1$ mV/sec (Fig. 3), the electrode was scanned at 1 mV/sec until ~ 150 mV before the CV wave and then ν was decreased to the desired value until the peak was traversed, then increased to 1 mV/sec again until the opposite peak was reached. Although both waves shifted with increasing ν, the behavior of the anodic and cathodic waves with ν was different. The anodic peak shifted out and became broader and i_{pa}/ν decreased with increasing ν. The cathodic peak shifted out but maintained roughly the same shape, and for $\nu < 50$ mV/sec, i_{pc}/ν was nearly the same (Fig. 4). The integrated charges under the oxidation and reduction waves were within 5% of each other and constant for the range 1-10 V/sec. The integrated charge at $\nu < 1$ mV/sec was not measured, but the constant shape of the waves suggests that the charge was the same for all scan rates. The electrode deteriorated more rapidly at 10 V/sec than at slower scan rates, probably because of the large current density (0.16 A/cm2) being passed through the film at this ν (Fig. 5).

The shape of the CV waves of Pt/NAF, TTF$^+$ electrodes varied slightly from electrode to electrode; the peak currents were directly influenced by the amount of TTF$^+$ incorporated into the polymer layer. The examples given in the figures represent typical behavior. Because the life of any single electrode was limited, the data represent the behavior from several different electrodes. The integrated charge under a steady-state wave in cyclic voltammetry is included with each figure to make comparisons between figures easier. The CV behavior for the Pt substrate was not unique. The CV waves of the NAF-TTF polymer on Au, pyrolytic...
graphite, optically transparent SnO$_2$-coated glass, and Ta substrates were very similar to that on a Pt substrate.

Equilibrium behavior.—To investigate whether the peaks would shift in and exhibit the same E_p value as equilibrium was approached, the potential was scanned to a given potential and held there until the current dropped below 1.5 nA (i.e., 0.1 μC of charge per min).

The ratio of the charge passed at a given potential to that needed for complete reduction or oxidation of the film, δ, as a function of E, is shown in Fig. 7. This CV isotherm taken at essentially an infinitesimal scan rate showed a sharp break in both the cathodic and anodic branches which occurred well before the peaks in the cyclic voltammogram at 10 mV/sec. If the time required for establishment of equilibrium was decreased by setting higher current limits, the effect on the isotherm was to shift the breaks in the isotherm to more negative and more positive potentials; this is the same effect as seen for the peak potentials in cyclic voltammetry with faster scan rates. The potential of the break was invariant with the amount of electroactive material reduced or oxidized in the layer during the break in the isotherm. If the potential was shifted to less negative potentials during the break in the cathodic isotherm the reaction immediately ceased. The cathodic isotherm had a long slow rise before the sharp break in the isotherm which possibly resulted from the existence of other forms of TTF$^+$, such as bound to the SO$_3^-$ groups in the polymer.

CV: effect of scan reversal.—Reversal in the direction of a potential scan at different points along the CV wave was suggested by Conway et al. (8) to be a useful way of determining the effect of interactions among the molecules in the surface layer. The effect of scan reversal into both the oxidation and reduction waves of a Pt/NAF,TTF$^+$ electrode is shown in Fig. 8. The current after reversal of the scan was larger than that seen before the potential direction was reversed with this effect being more pronounced for the reduction wave. This effect is not usually seen with polymer or modified electrodes and points to strong positive (attractive) interactions among the oxidized molecules in the polymer with a smaller positive interaction among the reduced molecules. The potential of the reverse peak also showed a much larger shift for the reduction wave as compared to the oxidation wave.

CV: effect of supporting electrolyte concentration.—The concentration of supporting electrolyte was varied to determine the effect of changes in Br$^-$ concentration on the cyclic voltammogram of a Pt/NAF,TTF$^+$ electrode. The results of varying the KBr concentration from 3.5 to 0.1M are shown in Fig. 9 for the same electrode. A plot of the shift in peak potential of both the cathodic and anodic waves vs. the log of the KBr concentrations for all concentrations investigated is shown in Fig. 10. The fact that the CV waves of the Pt/NAF,TTF$^+$ electrode responded to changes in the supporting electrolyte concentration was not surprising, because it has already been established that the oxidized form of the electrode involved formation of a TTF$^+$-Br$^-$ complex. The shift in potential was close to the expected -59 mV per tenfold change in Br$^-$ concentration. A significant deviation in the shape of the waves occurred at the lowest concentration, 0.1M. At this concentration each wave looked to be two waves, a broad diffusional looking wave with a sharper wave superimposed. Significantly, the color of the oxidized form of the wave at the lowest concentration was no longer purple but golden. The average molar concentration of electroactive TTF molecules in the polymer films, as was stated earlier, was typically 0.3M. The concentration of KBr present in the polymer after im-
Fig. 8. Cyclic voltammogram of a Pt/NAF,TTF + electrode in 1M KBr at 10 mV/sec with (a) scan reversal into the cathodic wave; and (b) scan reversal into the anodic wave; \(Q_t = 90 \mu C \).

Fig. 9. Cyclic voltammogram of a Pt/NAF,TTF + electrode at 10 mV/sec in (a) 3.48M KBr; (b) 1.0M KBr; \(Q_t = 108 \mu C \); (c) 0.1M KBr.

that after soaking in a KBr solution, Br was present in the polymer. Experiments using NaOH showed that after equilibration the Nafion achieved nearly the same concentration of NaOH as that present in solution (9). These facts suggested that the electrochemical process changed at the lowest concentration because of an excess in electroactive TTF over bromide ion present in the polymer.

CV: temperature effects.—The effect of varying the temperature on CV waves has been used to obtain information about the kinetics of reactions coupled to electron transfer reactions (10). Unusual temperature effects on the CV waves of TTF-TCNQ pressed pellet electrodes were previously observed (11). The temperature of the Pt/NAF,TTF + electrode immersed in the solution was held at a given value by placing the electrochemical cell in a water bath. The SCE reference electrode remained at room temperature throughout the experiment with only the reference electrode tip in the solution. The CV waves of a Pt/NAF,TTF + electrode were strongly temperature dependent as is shown in Fig. 11. Both the cathodic and anodic waves shifted closer together with increasing temperature. The reduction waves at the higher temperatures (36° and 55°C) were initially sharper than those at lower temperatures but within a few cycles broadened out to the shape shown in Fig. 11. The shift in peak potential with temperature was greater for the reduction wave as is shown in the plots of reduction and oxidation peak potentials vs. temperature (Fig. 12) which were linear over the temperature range studied.

CV: effect of different halide ions.—The halide ion in the supporting electrolyte was varied to determine the effect of the counterion on the CV waves of a Pt/NAF,TTF + electrode (Fig. 13). The CV peaks shifted to more negative potentials in the order Cl− < Br−.
Fig. 11. Cyclic voltammogram of a Pt/NAF, TTF+ electrode in 1M KBr at 10 mV/sec and at a temperature of (a) 1.5°C; (b) 21°C; (c) 36°C.

Fig. 12. Peak potential vs. temperature from the experiment shown in Fig. 11.

Fig. 13. Cyclic voltammogram of a Pt/NAF, TTF+ electrode at 10 mV/sec in various supporting electrolytes: (a) 1M KF, S = 74 μA/cm²; (b) 1M KCl, S = 740-240 μA/cm²; (c) 1M KBr, S = 740 μA/cm², Q = 137 μC; (d) 1M KI, S = 740 μA/cm².

< I- and the oxidized form of each electrode was purple. In KF the CV waves were broad and had a shape similar to that of other electroactive molecules observed in Nafton. The shape of the CV waves and the color of the oxidized form of the electrode, golden, in KF was identical to the electrode behavior observed using potassium acetate and potassium sulfate as supporting electrolytes. TTF+ is known to form one-dimensional conducting complexes with Cl-, Br-, and I-, but no conducting complexes have been reported using F-, acetate, or sulfate. If the same electrode was used in different supporting electrolytes, the behavior was unaffected by the order in which the different solutions were investigated. No effect on the cyclic voltammogram of a Pt/NAF, TTF+ electrode in a Br- solution was seen when the cation of the supporting electrolyte was changed from potassium to sodium.

Chronoamperometric behavior.—Chronoamperometric methods can be useful in determining the apparent diffusion coefficient, D_{app}, of a species confined to a layer on an electrode surface. When D_{app} is measured using chronoamperometric methods, the value may be associated with a specific ion diffusion through the polymer, an electron hopping process, or both, depending on what process limits the current (12). A potential step (0-0.25V) was applied to a reduced Pt/NAF, TTF+ electrode in a 1M KBr solution and the current-time (i-t) transient recorded. The plot of i vs. $t^{-1/2}$ (Fig. 14) shows a linear region with zero intercept (Cottrell region). The slope of the linear region yields D_{app} of 8×10^{-7} cm²/sec based on the Cottrell equation and assuming an average concentration of the electroactive TTF molecules uniformly distributed throughout the film and a one-electron process. Based on the thickness of the layer and D_{app}, the onset of deviations from Cottrell behavior which occurs at longer times due to thin layer effects occurred at approximately the expected time. The current from the i-t trace for the reduction of the electrode using a potential step from 0.2 to -0.4V decayed rapidly after 2 msec, presumably showing the effect of reduction of the bulk of the TTF+. The processes by which the electrode reduced and oxidized during a potential step were clearly different.

Spectroscopy.—Electrodes were formed on a transparent SnO₂ glass conducting substrate so that ab-
electrode in 1M KBr. The potential was stepped from 0.0 to 0.25V. The electrochemistry of the SnO2/NAF,TTF + polymer. The electrochemistry of the SnO2/NAF,TTF + form of the oxidized and reduced molecules in the substrates. The vis-near infrared spectra of dry electrodes was similar to that of electrodes using Pt substrates. The vis-near infrared spectra of dry electrodes were recorded with a Cary 14 spectrophotometer for electrodes before electrochemical cycling and after electrochemical cycling with the electrode left in the reduced or oxidized forms (Fig. 15). The results from these spectra are shown in Table I along with results from previous studies of TTFBr0.79 and TTFC1 crystals (13). The spectrum of the electrode before electrochemical cycling was close to that of the dimer. The spectrum of the reduced form of the electrode did not show any peaks in the visible region; this corresponds to published spectra of TTF (13) where only an absorption peak in the u.v. was seen. The surface of the reduced form of the electrode was partially covered with the nonelectroactive crystals of TTFBr0.7 (5), but the absence of any peaks in the spectra due to the nonelectroactive crystals means they contributed very little to the absorption spectrum. The spectrum of the electrode in the oxidized form also was similar to that for crystals of TTFBr0.79, where the peak present in the near-infrared was shown to correspond to intermolecular electronic transitions along the conducting axis of the crystal. The presence of the near-infrared peak leads to the conclusion that the oxidized form of the electroactive molecules in the electrode was TTFBr0.7-0.8.

Discussion

The electrochemical investigation of Pt/NAF,TTF + electrodes leads to the following model for the oxidation and reduction of the electroactive TTF molecules in the polymer layer. The consistency of the experimental results to this model is discussed below. Incorporation of TTF + into the Nation layer produces a golden-colored film in which TTF + has no special structural arrangement and exists predominantly as TTF + -SO3 - pairs. However, upon several reduction and oxidation cycles, counterions from the electrolyte (e.g., Br - and K +) are incorporated into the layer and the oxidized form of the layer is now purple and has an organized TTF + Br - structure (probably in the conductive nonstoichiometric form, TTFBr0.7). The overall redox reaction upon cycling can then be written as

\[
\text{TTFBr}_{0.7} + 0.7e = \text{TTF} + 0.7\text{Br}^- \quad [1]
\]

However, the structural changes that occur during these redox reactions cause the electrochemical behavior to deviate from that expected when all processes and elementary steps are rapid and reversible. Neutral TTF has a crystal structure in which the flat TTF molecules lie parallel to one another, forming stacks of TTF with each molecule assuming a staggered (st) configuration with respect to the one below it (14). The crystal structure of TTFBr0.7 also involves stacks of TTF + molecules, but these assume an eclipsed (ec) position with respect to one another (13). The reduction of the film involves loss of Br - and structural rearrangement of the molecules from the ec TTF + form to the st configuration of the neutral TTF molecules. The stabilization of the TTF + molecules by formation of the Br - complex makes the complexed form of TTF + harder to reduce than the uncomplexed one. The reaction then occurs by a "square scheme" mechanism (3)

\[
\text{TTFBr}_{0.7} (ec) + 0.7e = \text{TTF} (ec) + 0.7\text{Br}^- \quad [2]
\]

\[
\text{TTFBr}_{0.7} (st) + 0.7e = \text{TTF} (st) + 0.7\text{Br}^- \quad [3]
\]

(where the underlined forms are the stable ones). The \(E^0\) for reaction [2] is more negative than \(E^0\) by an amount related to the energy difference between the ec and st forms of neutral TTF, and \(E^0\) for reaction [3] is more positive than \(E^0\) by an amount related to the energy difference between the st and ec forms of the TTF + species. The different \(E^0\)-values for oxidation and reduction result in the peak splitting shown in

Table I. Absorption maxima of SnO2/NAF,TTF + electrodes

<table>
<thead>
<tr>
<th></th>
<th>(\lambda_{max}) (nm)</th>
<th>(\lambda_{th}) (nm)</th>
<th>(\lambda_{ov}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh SnO2/NAF,TTF + electrode</td>
<td>400</td>
<td>490</td>
<td>760</td>
</tr>
<tr>
<td>TTFCl (dimer)</td>
<td>380</td>
<td>530</td>
<td>760</td>
</tr>
<tr>
<td>Oxidized SnO2/NAF,TTF + electrode</td>
<td>397</td>
<td>561</td>
<td>1890</td>
</tr>
<tr>
<td>TTFBr0.7 +</td>
<td>574</td>
<td>587</td>
<td>1970</td>
</tr>
</tbody>
</table>

* Absorption spectrum of powdered samples dispersed in KBr (from Ref. (13)).
the CV waves. However, the peaks do not occur at potentials governed by their respective E^0's because the following irreversible reactions cause the peaks to shift in (toward E^0). This behavior is characteristic of reversible electron transfers followed by irreversible following reactions of solution species (an E_C reaction) (18) and of surface monolayers (16). The extent of the shift in the peak reversal depends on the rate constants of the following reactions (k and k') and the scan rate (v) in a manner consistent with the behavior shown in Fig. 3 and 4. The rapidity and irregularity of the structural rearrangements is shown by the rapid scan ($v = 10$ V/sec) experiments, where no reversal peaks correspond to either reaction [2] or [3] are observed (Fig. 5). At essentially infinitesimal scan rates (Fig. 7), the behavior approaches that governed by the overall reaction, (Eq. [1]); the results suggest that $E^0 = 0.00 \pm 0.02$ V vs. SCE.

The model is consistent with the 59 mV shift of both peaks per tenfold change in Br$^-$ concentration (Fig. 10). The shifts in E_C with supporting electrolyte anion (Fig. 10) point to stronger complexion of E_C by anion ($E_C^0 \sim -0.1$ V vs. SCE) and isothermic complexion by Cl$^-$. Fluoride ion does not form a conductive complex, so the wave loses its thin-layer shape in a F$^-$ medium and the structural reorganization effects are absent (Fig. 13a).

The quantitative electrochemical behavior and the detailed shapes of the waves depend on other factors, suggested as attractive interactions within the film which cause the extreme narrowness of the reduction peak. A digital simulation treatment of this system will be discussed elsewhere (17). However, thin-layer E_C behavior probably is a reasonable approximation for both parts of the square scheme. The reaction of the Pt/NAF,TTF$^+$ electrode is considered to be thin layer at scan rates below 10 V/sec because the integrated charges are independent of v. The theory predicts that in the scan rate regime where the rate of the following reaction is much larger than the scan rate and the electron transfer is reversible (i.e., where $(RT/nF)(k/\nu) > 10$), no peaks are observed for the unreconstructed form of the molecules and the variation in peak potential is described by Eq. [4] (16).

$$E_{pc} = E^0 + (2.3RT/nF) \log (RT/\nu nFv)$$ [4]

The plot of E_{pc} vs. $\log v$ for a Pt/NAF,TTF$^+$ electrode (Fig. 6) was linear over the intermediate range of scan rates (10^{-2} to 10^{-2} V/sec). The slope of the line (-18.4 mV) is much smaller than that predicted by Eq. [4] (16) for a thin-electrode situation. The predicted value of $\Delta E_{1/2}$, the width at half-height, for a thin layer E_C reaction is 66/n mV (16). The width of the anodic wave is ~ 20 mV but the cathodic wave is much narrower. The narrowness of the reduction wave can be explained by attractive interactions among the oxidized molecules in the polymer; these are also responsible for the unusual behavior found for scan reversal at different points in the cathodic wave, where the cathodic current increases on warming temperature as a result of the ΔS^0 term. The other three terms in Eq. [7] which contribute to the slope, one of which, ΔH^*, has been extensively studied for solution reducton species (18). The change in entropy for the reduction of a cation in solution is generally positive with dE/dT in the range 0.2-2.0 mV/K. The peak potentials of both the oxidation and reduction waves should shift to more positive potentials with increasing temperature as a result of the ΔS^0 term. The other three terms in Eq. [7] result from the perturbation caused by the following reaction. While ΔS^0 is unknown for the reaction, the other two terms can be estimated and yield ± 870 mV/K for $n = 1$ (T = 298 K, v = 0.01 V/sec) and ± 0.90 mV/K for $n = 3$ (T = 298 K, v = 0.01 V/sec). The + for reduction, − for oxidation. This can come from the shift in the reduction wave to more positive potentials and the oxidation wave to more negative potentials with increasing temperature. The two calculated terms are in the same direction as the effect ΔS^0 for the reduction peak, but are opposite to the effect ΔS^0 for the oxidation peak. This could explain why the cathodic wave has a larger positive slope than the anodic process and why the anodic process has a slope with a sign opposite to that of the reduction process.

We do not believe that other explanations of the observed CV peak separations and narrow waves for Pt/NAF,TTF$^+$ electrode is reasonable. For example, resistance effects can cause peak separations in cyclic voltammetry (19), but a large resistance (R > 0.1 MΩ) would be needed to cause the peak separations observed in the slow scan rate experiments, because of the small currents being passed. The cell resistance of a Pt/NAF,TTF$^+$ electrode in 1.0 M KBr
was small (20%) as determined by observing the charging of the double layer in response to a potential step in a nonfaradaic region. A small heterogeneous electron transfer rate constant can produce peak splittings in cyclic voltammetry. However, the peak separation found at 0.02 mV/sec would yield (with $a = 0.52$ and $n_a = 1$) a rate constant, k_α, of 2×10^{-8} cm/sec (20). This seems unreasonably small compared to other values reported for electroactive molecules in Nafion (6b, c). Attractive interactions between reduced and oxidized molecules will not normally produce CV peak splittings; however, the isotherm under those conditions would not have the shape found for Pt/Nafion/TTF$^+$ electrodes.\(^1\)

Conclusion

A freshly formed Pt/Nafion/TTF$^+$ electrode contains TTF$^+$, probably as TTF$_2^{2+}$, electrostatically bound on the $-\text{SO}_3^-$ cation exchange sites of the polymer. After electrochemical cycling the electroactive molecules in the polymer form small domains of solid which show similar behavior to electrodes made from thin films of TTF. This aggregation occurs within the polymer film, where the reduced form of the electroactive molecules is neutral TTF and the oxidized form is TTFBr$_{0.7}^+$. The sharp, narrow CV waves for the oxidation of TTF and reduction of TTFBr$_{0.7}^+$ are split by over 100 mV; this can be explained by structural transitions between the oxidized and reduced forms. The shape and hysteresis found on scan reversal demonstrates that attractive interactions which are greater for the oxidized form exist between the electroactive molecules.

Acknowledgment

The support of this research by the National Science Foundation (CHE 7903729) and the Robert A. Welch Foundation (F-079) is gratefully acknowledged.

Manuscript submitted April 26, 1982; revised manuscript received Sept. 14, 1982.

Any discussion of this paper will appear in a Discussion Section to be published in the December 1983 Journal. All discussions for the December 1983 Discussion Section should be submitted by Aug. 1, 1983.

Publication costs of this article were assisted by the University of Texas at Austin.

\(^1\) For a detailed discussion of peak splittings in cyclic voltammetry resulting from phase transitions, see Ref. (2d and 8).

REFERENCES

