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chemical equilibrium problems, espe- 
cially those involving ionic equilibria, occupy a large 
portion of the undergraduate chemistry curriculum. 
The modern approach to the solution of equilibrium 
problems usually involves writing the pertinent equilib- 
rium constant expressions along with additional equa- 
tions specifying the conditions of the particular prob- 
lem, such as material balance equations, the electro- 
neutrality equation or the proton balance equations, 
and solving these for the unknown concentrations. 
Although writing equations specifying the problem is 
straightforward, t.he actual solution of these non-linear 
simultaneous equations often presents difficulties. At 
the elementary level, these equations are usually solved 
by making approximations which will make the equa- 
tions either linear or particularly well-behaved nou- 
linear ones. Unfortunately, as problems become 
more complex making a priori reasonable approxima- 
tions becomes more difficult. Other approaches to the 
solution of these equations involve graphical (1) or 
numerical methods. The numerical methods have 
received repeated attention [see (2)  and the references 
contained therein], and generally involve algebraic 
manipulation of the equations to obtain one or more 
higher degree equations in a few unknowns, which are 
then solved using well-known numerical methods such 
as the Newton-Rapheson or iterative procedures (3). 

The aim of the present work was to show how a gen- 
eral digital computer program for solving equilibrium 
problems could be formulated. Use of a systematic trial- 
and-error numerical method allowed the equilibrium 
constant and material and charge balance equations to 
be written in the program in a form closely correspond- 
ing to the equations as initially written in the statement 
of the problem. A program in this form does not re- 
quire tedious algebraic combmations of equations; 
this allows a general program in which only the equa- 
tions to be solved, the values of the constants and 
analytical concentrations, and the output format must 
be specified for any given problem. The method used 
is described below. The program, written in a com- 
monly used computer language, FORTRAN, is given 
and explained through the use of two examples. 

Formulation of the Method 

Since a computer is incapable of operating in terms of 
unknown variables, algebraic equations as such cannot 
be introduced into the computer. The approach taken 
then to solve n algebraic equations in n unknowns is to 
guess values for two variables, which are called, by 
analogy to graphical methods ( I ) ,  the master variables. 
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The remaining variables are then calculated using n-2 
of the equations written in only slightly modified form. 
This modified form for writing the n-2 equations con- 
sists of solving each for one of the variables in terms of 
the others, and sequencing the equations in such a man- 
ner that any variable can be computed using the master 
variables and variables already computed in the se- 
quence. The remaining two equations are used as tests. 
If both are satisfied when all of the variables are sub- 
stituted into them, the problem is solved. If they are 
not satisfied, the master variables are systematically 
varied until the two test equations are satisfied. 

The master variables [called CX and C Y ( I )  in the 
progran~] are varied in the following manner. CX is 
initially given the guessed value and two CY values are 
found, CY(1) and CY(2) ,  each of which satisfy one of 
the two test equations. If the correct CX has not been 
used, CY(1) will not equal CY(2).  CX is then varied 
by a systematic procedure, new values of the variables 
and CY(1) and CY(8) are calculated, and this procedure 
is continued until CY(1) equals CY(2).  A flow chart 
of the method is given in Figure 1. Although the 

Figure 1. Overall flow chmt of computer program for solving equilibrium 
problems. 
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systematic trial-and-error procedure used in this pro- 
gram is somewhat slower than iterative or the Newton- 
Rapheson methods, it is more generally applicable and 
does not suffer the convergence problems associated 
with these methods (3). The time required on a high 
speed digital computer is often negligibly different. 
The actual procedure of carrying out these operations, 
the method of making initial guesses for the master 
variables, and the manner in which the program oper- 
ates is best illustrated by the solution of a simple 
problem. 

Example 1 .  

Calculate the concentrations of all species in a 
CF solution a weak acid, HaA. 

(1 )  Formulation of  Equations. The six species in 
this system are H f ,  OH-, HA, H2A-, HA2-, and 
A3-. They are related through the following equa- 
tions: 

= [&A-I [Hf1 K2 = [HAa-] [Hf1 = [AJ? [H+! 
[HA1 [&A-I [HAP-] 

K,  = [H+] [OH-] 
C = [HaAI + [HIA-I + [HA2-] + [A'-] 
[Hfl = [OH-I + [HzA-I + 2[HAP-I + 3[Aa-] 

(2 )  Choosing Master Variables. Two species, called 
C X  and C Y ( I ) ,  are chosen, and initial guesses are made 
for their concentrations. The basis for the initial 
guesses will be discussed later, but guesses generally are 
not critical and are values known to be smaller than the 
actual amount. In  this problem the following guesses 
were used : 

CX = [Hf] = (initial guess) 
CY(I) = [A3-] = (initial guess) 

(3) Computing Other Variables. All but two of the 
equations are used, in a serial fashion, to calculate con- 
centrations of remainmg species. Simple algebraic 
combination of equations may sometimes be necessary. 

K ,  [OH-] = - 
[H+l 

Note that the sequence of calculations is important. 
Since the computer cannot operate in terms of unknown 
variables, [H,A-] cannot be calculated in the third 
equation unless a value for [H3A] has been calculated 
and is stored in the computer. 

(4)  Formulation of Test Equations. The two re- 
maining equations are now written in the following 
form: 

Y = [ H a ]  + [HA-] + [HA2-] + [Aa-] - C 

and 
Y = [H&I + 2[HAZ-I + 3[A8-I + [OH-] - [Ht] 

and are referred to as test equations 1 and 2. 
(5) Introduction of Problem Into Computer Program. 

The complete program for this problem written in 
FORTRAN is given in Figure 2. While it is beyond 
the scope of this discussion to delve into the details of 
programming, a brief explanation of the workings and 

statements of the program will be attempted. The 
essentials of FORTRAN, a widely used algebraic com- 
piler designed for science and engineering problems, can 
be mastered in a few hours; a good introductory treat- 
ment is that of MeCracken (4). 

The coding of variables and constants is as follows: 

The concentrations of the species are all terms starting 
with the letter "C". The equilibrium constants use the 
letter "K" as a second letter but must begin with a letter 
other than I ,  J ,  K, L, A t ,  or N, which are reserved for 
fixed point variables or integers in FORTRAN. 

The enclosed portions of the program in Table 1 
represent those parts added to the general program 
concerning the particular problem under consideration. 

Part 1. Reading of equilibrium constants and analytical eoneen- 
trations. 

In this case the data given is for asolution in whichC = 0.2 F, 
K,  = K. = and KS = FORTRAN ex- 
ponential notation is used here, so that 1.OE-3 represents 
1.0 X 

Par t  1 

Ph* e 

P a r t  3 

P a r t  4 

P a r t  5 

P a r t  6 

P a r t  7 

Flgure 2. 

P a O G R A 4  S O L V A R  
fc  = 3.7 

C H 3 1  = C X * * 3 W C Y I l I / I A K l " A K 2 Y A X 3 I  
C H I  = C X I C Y l I 1 / A 1 3  
C H 2 A  = A < l * C V 3 A / C X  
COH i H I ( / C X  

GO T O  7 
Y = CH~~+Z.*C~A+~.*CYIIIICOH-CX 
I F  I J Y  - 1331 3.3312 
I 6  

I F  I C X / l O . O * * I - L X I  - 10.0'*101 2 1 . 2 1 9 1 9  
F O R M A T  17E13.41 
P R I N T  1 0 0 ~ C X ~ C Y 1 1 1 ~ C Y l 2 1 ~ C H 3 h 9 C ~ 2 A n C H A 4 C O H  
EN" 
END 

General computer program with statements for Example 1. 
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Table 1 .  Intermediate Values of CX, CY(I), CY(2),  ond Y 

( Y )  
(Statement 14) 

-0 .19783-11 
0 .97923-20 

-0 .81483-19 
0.2618E-19 

-0 .46553-19 
-0 .23313-19 
-0 .74813-20 

0 .35183-20 
-0.6196E-20 
-0 .49543-20 
-0 .37093-20 
-0.2fi09E-20 
-0 .14993-20 
-0 .42833-21 

0.601313-21 
-0.323iF>-21 
-0.216OX-21 
-0.113GE-21 
-0 .11143-22 

0.933'33-22 
0.00003+00 

Part 2. Initial guess for CX. 
Part 3. Initial guess for CY(I ) .  
Part 4. Sequence of equations for other variables. 

These are the equations in ( 3 )  above written in computer 
language. In FORTRAN the multiplication operation is 
represented by *, the division operation by /and the exponenti- 
ation operation by **. 

Part 5 .  Test equation 1. 
Part 6 .  Test equation 2. 

These are the equations in ( 4 )  above. Note that the addi- 
tion and subtraction operations are represented by their con- 
ventional symbols. 

Part 7. Output instructions. 
In this case the instructions are to print the values of the 

concentrations of all of the species in a specified format in E- 
notation. 

Note that the statement numbers attached to some of the 
statements in these parts must be included. 

The Program 

The following is a general description of the manner 
in which the program is used in the computer to carry 
out the computation. The program is carried out in 
steps from top to bottom, but also involves skipping 
ahead or back depending upon instructions in the 
program. The program name is read, followed by the 
input data and init,ial guesses for CX and CY(1). 
The parameters LX, MX, JY,  LY, and MY, are in- 
ternal control integers of the program, all initially set 
to a value of one. The DIMENSION statement in- 
dicates that there are two different CY's used in the 
program. Values for the concentrations of the various 
species are now calculated in Part 4, based on the input 
data and the initial guesses of CX and CY(I). 

The statements involving J Y  are provisions to 
prevent the computer from increasing CY without 
limit in case somc error has occurred (for example a bad 
initial guess for CX). The program is designed to in- 
crease J Y  by one every time CY is increased. State- 
ment 7 tests to see if J Y  is 100. If it is not, t,he pro- 
gram continues. If it is, the program leaves CY(1) 
and goes on to calculate CY(2). These steps are in- 
cluded to prevent wasting time on the con~puter if 
errors occur or wrong input data is used. 

The program now calonlates a value of CY(1) which 

satisfies test equation one. This is accomplished as 
follows. A value of Y is calculated in statement 1 
based on the initially guessed value of CY and the other 
concentrations. Since the initial value of CY is guessed 
smaller than the actual value, the sign of the value of 
Y just calculated serves to indicate when subsequently 
calculated CY-values are too small or too large. There- 
fore this first value of Y is stored as a controlling number 
Z1 in statement 4. The parameter MY and statement 
3 assure that Z1 is calculated only for the initially 
guessed CY. Let us assume that Y is negative when 
CY is too small. Then a negative value of Z1 is stored 
to control the program. Whenever a tested value of 
CY appears which yields a negative value of Y, the 
program will cause CY to increase. Whenever a posi- 
tive value of Y appears, the program will cause CY to 
decrease. The correct value of CY will he that value 
for which Y is zero. Y is tested by statements 6 or 8, 
depending upon the sign of Z1. If CY(1) is too small, 
as it must be on the first trial, it is increased by 0.1 in 
statement 9 (LY is initially equal to one) and the pro- 
gram cycles back to statement 11 to try this new 
CY(1). As long as CY(1) is too small it is increased in 
steps of 0.1. When Y changes sign, indicating CY(2) 
is now too large, CY(1) is decreased by 0.1 in statement 
10, and increased by 0.01 in statement 9 (LY has 
changed to two following statement 10). This process 
continues until essentially ten significant figures have 
been accumulated for CY(1), as tested by the IF-state- 
ment two statements after statement 10. 

Now CY(2) is treated in an identical manner using 
test equation 2. The change from CY(1) to CY(2) is 
accomplished using statements 12 and 13. After a 
value of CY(2) which satisfies test equation 2 (i.e., 
minimizes that value of Y) is calculated, the difference 
between CY(1) and CY(2) is calculated in statement 14. 
Now CX is varied using statements 24 on by a pro- 
cedure virtually identical to that used for changing CY. 
For each new value of CX two values of CY must be 
calculated using the above procedure. At last, when a 
value of CX which minimizes the value of Y in state- 
ment 14 has been calculated, all of the equations are 
simultaneously satisfied, and the answers are printed. 

To illustrate how the program operated in this prob- 
lem, values of CY(l), CY(2) and Y (in statement 14) 
for every CX were printed and these results are shown 
in Table 1. For the initial CX (lo-=) CY(1) and CY(2) 
were calculated (the individual CY-values used in 
calculating CY(1) and CY(2) are not given) and Y was 
negative. CX was increased to 0.1, etc. Note that 
CX is increased until Y changes sign. Although these 
values are calculated to ten significant figures, only the 
first four are shown. The computer program and 
technique for varying CX and CY is similar to that used 
by Herman and Bard for solving one-variable equations 
(5). Although this method appears to be time-con- 
suming, the total conlpiling and computation time for 
this problem on a Control Data Corporation 1604 
computer was only 17 seconds and the following results 
were obtained: 

[H+] = 1.365 X 1 0 - W  [H2A-] = 1.365 X 10-*1M 
[A"] = 7.325 X 10-22M [HAa-] = 1 . 0  X 10"M 
[HIA] = 0.1863M [OH-] = 7.325 X 10-ISM 
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Discussion 

The variables selected to be represented as CX and 
C Y ( I )  are generally those which appear most often in 
the equations. Thus, one generally selects [H+] and 
complexing ligands since these repeatedly appear in 
equilibrium expressions. To solve directly for the re- 
maining variables it may be necessary to combine some 
equations, although this is of minor difficulty. 

The selection of the initial C X  and C Y ( I )  can be il- 
lustrated with Figure 3. C Y ( 2 )  and C Y ( 1 )  are plotted 
against C X .  The intersection represents the correct 
values of C Y ( 1 )  and C X .  To the left of this point Y is 
negative, to the right it is positive. The program is 
written so that scanning is done in the increasing direc- 
tion. The initial CX therefore must be smaller than 
the correct value and the initial C Y ( 1 )  must fall below 
both lines (such as point one). An initial C X  close to 
the point of intersection allows the initial CY(Z)  to be 
guessed with a greater probability that it will fall below 
both lines. For example if C X  is guessed too small, it 
is possible that the initial C Y  chosen will be above one 
of the CY lines a t  that point. 

Another difficulty arises in the inability of the com- 
puter to retain more than eight or nine significant 
figures. In  writing the sequence of equations one must 
be certain that a very low concentration isn't calculated 
as the difference between two large numbers. Thus, it 
would he poor to use the following equation: 

to calculate [A3-]. This equation should he used either 
for calculating larger concentrations or as a test equ% 
tion (as was done here). 

CYIII 

Example 2 

C X  

Figure 3. Plot of CYOJ versus CX. 

Consider a solution which is 0.01 M in NiZ+, 0.1 
M in NH3, 0.1 M in NH4+, and C M in N%H2Y, where 
H4Y is ethylenediamine-tetraacetic acid (EDTA). 
This problem involves 17 solution species, including 
six nickel-ammonia complexes, the nickcl-EDTA com- 
plex, and five ionization states of H4Y. The various 
equilibrium constants are given below (5). 

Equilibrium Constants (Part 1 )  : 
Formation constants for Ni(NH.)o'+: 

KI = [Ni(NHa)~+l/lNi2+][NHJ1 = 562 
KX = 159.0 

Ionization Constants for H4Y: 
K., = 1 . 0  X lo-' 
Knz = 2.14 X 
Kaa = 6.97 X lo-' 
Kar = 5.50 X 10-L' 
KN<V = 4.17 X 1018 
Ka (for NH8) = 1 . 8  X 10" 
K ,  = 10-14 

Variables andlnitial Values: 
(Part 2) CX = [NHsl = 0.05 
(Part 3) CY(Z) = [Nis+] = 1 . 0  X 

Sequence of Equations (Part 4) : 
[N~(NHZ)~+]  = K, [Ni2+l [NHJ] 
[Ni(NHa)?+] = K3[Ni(NHa)Z+l[NHa] 
[Ni(NHsja'+l = K,INi(NH~)Pl [NH~I  
[Ni(NH8)?+] = K,[Ni(NH&'+I[NH81 
[Ni(NHa)Pl = IG[Ni(NHa)r2+l[NHaI 
[Ni(NH&'+] = K,[Ni(NH,)?+I[NH,I 
[NiYP-] = 0.01 - [Nixt] - [Ni(NHa)'+] - 

[Ni(NH,),'+] - [Ni(NHa)?+] - 
[Ni(NH,)P] - [Ni(NHa)?+] - 
INi(NH4PI 

INH.+l = 0 . 2  - [NHs] - [Ni(NHa)'+] - 
2[Ni(NHa)?+] - 3lNi(NHs)?+l - 
4[Ni(NH3)r2+] - 5[Ni(NHs)s2+] - 
6[Ni(NH~)sz+] 

Test Equations: 
(Part 5) 1. Y = 

(Part 6) 2. Y = 

C - [H,Y] - [Hay-] - [H,Y2-I - 
[HYa-] - [NiYa-I - [Y4-] 

2[Ni2+] + 2[Ni(NHa)9+l + 
2[Ni(NH8)?+] + 2[Ni(NHs)82+] +- 
2[Ni(NH8)Ft] + 2[Ni(NH,),Zt] + 
2[Ni(NHde2+[ + [NH&+I + [H+l + 
2C - [Hay-] - 2[H2Y2-I - 
3[HYa-] - 4[Y"l - [OH-] - 
0.12 - 2[NiYB-] 

Tnblr 2 shows thr ~olr~dated rcsultq for follr values of 
C. 'I'hc prngrmn time was 80 seconds, Sote that this 

Table 2. Results for Example 2" 
C = 0 C = 0.005 C = 0 0 1  C = 0 012 

3.17 X 10-1 
1.16 X 10-d 
1.21 X 10.8 
3.86 x 10-8 
3.55 X 10.' 
1.19 X 10.8 
7.60 X 103 

0100 
0.0653 
0 
0 
0 
0 
0 

8.51 X 10-1° 
117 X 10-5 

0 

. 8 0  seoonda. 
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program can be used conveniently to calculate concen- 
trations for many different conditions by using DO- 
loops for generating data (e.g., C in the case above). 
For exanlple the calculation in Table 2 could represent 
four points in the titration of nickel(I1) with EDTA 
in an ammoniacal medium. Similarly, to calculate the 
concentrations of the various species during the titration 
of HA with sodium hydroxide only the second test 
equation need be changed to 

Y = [H&l + 2[HAZ-] + 3[A"] + [OH-] - [H+] - B 

where B represents the moles of sodium hydroxide 
added per liter. A DO-loop for generating various 
values of B would then calculate the titration curve of 
HA with sodium hydroxide. Library programs are 
available (7) to allow automatic plotting of the titratiori 
curve by the computer. 

The program written here, or nlodifications of it, 
should prove useful for solving a large number of dif- 
ferent kinds of problems in chemical equilibrium and 
for certain types of simultaneous, non-linear algebraic 
equations. The program presented must not be used 
without some background in computer programming. 

For example, there are some variations in versions 
of FORTRAN for different computers which would re- 
quire modification of the program presented. Ap- 
pendix 1 in McCracken (4) might be useful for re- 
writing this program in another version of FORTRAN. 
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