

Subscriber access provided by University of Texas Libraries

Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide

Eiji Endoh, Jonathan K. Leland, and Allen J. Bard

J. Phys. Chem., 1986, 90 (23), 6223-6226 • DOI: 10.1021/j100281a031

Downloaded from http://pubs.acs.org on February 3, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/j100281a031 provides access to:

- · Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Heterogeneous Photoreduction of Nitrogen to Ammonia on Tungsten Oxide

Eiji Endoh, Jonathan K. Leland, and Allen J. Bard*

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (Received: April 25, 1986; In Final Form: July 7, 1986)

Nitrogen was photosynthetically reduced to NH_3 with irradiated substoichiometric tungsten oxides and tungsten trioxide, WO_3 . The reaction occurred with moist N_2 above WO_3 or substoichiometric WO_{3-x} or with substoichiometric tungsten oxide dispersions in N_2 -saturated aqueous solutions. A decrease in the rate of NH_3 formation at WO_3 with time was attributed to tungsten bronze formation. The yields of NH_3 with WO_{3-x} and $WO_{2.96}$ were roughly proportional to time and were about $0.1 \, \mu g/h$. Ammonia production for dispersions of WO_{3-x} in an aqueous phase occurred by a thermal, rather than a photochemical, reaction.

Introduction

We report here studies of the photogeneration of NH₃ from N_2 and H_2O on irradiated tungsten oxide films and dispersions. Photosynthesis of NH₃ provides an attractive application of semiconductor photoelectrochemistry for utilization of solar energy to produce useful products. Previous studies of N2 photoreduction on semiconductors, mainly TiO₂, have appeared. 1,2 In general, these large band gap materials suffer from low yields of NH₃. The possible use of tungsten oxide materials for this purpose was suggested by a recent study of Braman et al.,3 in which these were used as agents for the adsorption of NH3 from the gas phase before its determination. The authors found that tubes of evaporated blue tungsten oxide filled with N₂ showed NH₃ blanks, while WO₃ did not. Photoreduction of N_2 represents a possible explanation of such blanks, and we undertook a study of various tungsten oxide preparations for this reaction. We demonstrate that substoichiometric WO_{3-x} can be used for the photoproduction of NH₃ with turnovers greater than unity.

Experimental Section

Tungsten Oxide Preparation. Table I summarizes the different films and methods of preparation. Pyrex beads and quartz tubes were pretreated for tungsten oxide coating by washing with acetone, immersing in hot 40% NaOH, washing with HNO₃, rinsing in water, and oven drying. Blue tungsten oxide (WO_{3-x}) was prepared on Pyrex beads and inside quartz tubes by vacuum deposition from a bundle of 1-mm-diameter tungsten wire (Alfa Products, 99.999%). A vacuum of approximately 0.1 Torr was maintained by leaking air or O_2 gas into the evaporation chamber. In the case of quartz tube substrates, tungsten wire was horizontally suspended in the center of the tube and heated by passing an ac current of ca. 80 A. When a thick film was necessary, cooling periods were allowed between coating intervals. Some samples were then heat-treated by passing the ac current through the tungsten wire under higher vacuum (10⁻⁵ Torr). Heat treatment changed the light blue color to dark blue. In the case of Pyrex bead substrates, the tube was partially filled with the beads and blue tungsten oxide was coated on them by a similar procedure. WO₃ films were prepared by annealing the WO_{3-x}

Hydrogen Energy 1982, 7, 845.
(3) Braman, R. S.; Shelley, T. J.; McClenny, W. A. Anal. Chem. 1982, 54, 358.

TABLE I: Tungsten Oxide Films

	-	
film	color	preparation method
	blue dark blue	vacuum evaporation vacuum evaporation and heating under high
WO_3	yellow	vacuum vacuum evaporation and annealing in air

films in air at 400 °C for 4 h. The resultant material was yellow. Preparation of Tungsten Oxide Powders. Tungsten oxide powders were prepared by peeling off a thick tungsten oxide film, which was coated inside a Pyrex tube repeatedly in the same way, and by grinding it in an agate mortar. Pt loading on WO_{3-x} was carried out by adding WO_{3-x} powder to aqueous solutions of H₂PtCl₆ (Alfa Products). The resulting slurries were dried and reduced in flowing hydrogen at 400 °C for 4 h and then cooled to room temperature under hydrogen. The amount of loaded metal was 5 wt % of the WO_{3-x}. RuO₂-loaded (5 wt %) WO_{3-x} was prepared by grinding the mixture of WO_{3-x} powders and RuO₂ powders (Alfa Products, 99.9%) in an agate mortar.

Characterization of WO_{3-x} . X-ray diffraction measurements of the tungsten oxide films and powders were carried out with the IBM Series 1 Automated Phillips vertical scanning X-ray diffractometer fitted with diffracted beam graphite monochromator (Cu K α). The spectral absorbance from 300 to 800 nm was measured with a spectrophotometer (Varian Instrument, Model 17 D). The surface area of WO_{3-x} was measured by a BET surface area analyzer (Micromeritics).

Photochemical Reaction—Gas Phase. The reactor was a 25mm-o.d., 20-cm-long quartz tube that was coated with blue tungsten oxide and tungsten trioxide or was packed with blue tungsten oxide coated Pyrex beads. The reactor was irradiated with a 1400-W ozone-free Xe lamp. A 10-cm water jacket was placed between the reactor and the lamp to absorb the IR light. The intensity at the reactor was about 250 mW/cm². The temperature of the reactor was ca. 50 °C under irradiation. During the irradiation, H₂O-saturated N₂ gas was passed through the reactor. The N₂ gas was purified in advance by a hot copper pellet column, chromic acid solution, a NaOH solution, and finally H₂O. The effluent gas from the reactor was bubbled through a 0.1 M HCl solution to trap products. As a blank, purified N₂ gas was also bubbled through 0.1 M HCl which bypassed the reactor. NH₃ was determined by Nessler's method.⁴ N₂H₄ was determined spectrophotometrically.5

Photochemical Reaction—Aqueous Phase. WO_{3-x} powders were dispersed in 50 mL of water in a Pyrex cylindrical reactor. The water was freshly prepared in a Millipore Continental water system before each experiment. The sample in the reactor was stirred magnetically during the experiment. The reactor was irradiated with a 1400-W Xe lamp for 5 h. A 10-cm Pyrex water jacket was placed between the reactor and the lamp to absorb the

⁽¹⁾ Schrauzer, G. N.; Guth, T. D. J. Am. Chem. Soc. 1977, 99, 7189. (2) (a) Schrauzer, G. N.; Strampach, N.; Hui, L. N.; Palmer, M. R.; Salehi, J. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 3873. (b) Schrauzer, G. N.; Guth, T. D.; Palmer, M. R.; Salehi, J. In Solar Energy: Chemical Conversion and Storage; Hautala, R. R., King, R. B., Kutal, C., Eds.; Humana: New York, 1979; pp 261-269. (c) Dhar, N. R. J. Chem. Phys. 1958, 55, 983. (d) Khan, F.; Yue, P.; Rizzuti, L.; Augugliaro, V.; Schiavello, M. J. Chem. Soc., Chem. Commun. 1981, 1049. (e) Miyama, H.; Juji, N.; Nagae, Y. Chem. Phys. Lett. 1983, 74, 523. (f) Li, Q.; Domen, K.; Naito, S.; Onishi, T.; Tamaru, K. Chem. Lett. 1983, 321. (g) Schiavello, M.; Sclafani, A. In Photoelectrochemistry, Photocatalysis and Photoreactors; Schiavello, M., Ed.; D. Reidel: Dordrecht, Netherlands, 1985. (h) Augugliaro, V.; Lauvicella, A.; Rizzuti, L.; Schiavello, M.; Sclafani, A. Int. J. Hydrogen Energy 1982, 7, 845.

⁽⁴⁾ Boltz, D. F.; Howell, J. A. Colorimetric Determination of Nonmetals; Wiley: New York, 1978.

Figure 1. Absorbance spectra of (A) evaporated blue tungsten oxide and (B) WO₃.

IR light. The temperature of the solution was ca. 55 °C under irradiation. During the irradiation, H_2O -saturated N_2 gas, purified as described previously, was passed through the solution. As a reference, commercially available TiO_2 powder (Degussa P-25) was used under the same conditions. After the reaction, the dispersion was centrifuged to remove the powders. The analysis of NH_3 was done spectrophotometrically by the indophenol method.⁴

Electrochemical Measurements. Electrochemical measurements were made with a Princeton Applied Research (PAR) Model 173 potentiostat and Model 174 universal programmer. The space charge capacity was measured with a PAR potentiostat and a PAR Model 5204 lock-in amplifier.

Results

Characterization of WO_{3-x} Film. X-ray diffraction analysis showed the evaporated blue tungsten oxide film to be amorphous. The heat-treated (under vacuum) tungsten oxide films showed several sharp X-ray diffraction peaks and was confirmed to be β-WO_{2.96}. The air-annealed blue tungsten oxide also gave sharp X-ray diffraction peaks and was determined to be stoichiometric WO₃ with a triclinic lattice (ASTM 20-1323). When the oxygen pressure in the vacuum evaporator was relatively high, the color of the evaporated tungsten oxide was yellowish green or light yellow. A clear blue film was obtained when the oxygen pressure was low. Stoichiometric tungsten trioxide is yellow, but the color changes to blue by slight reduction.⁶ The substoichiometric composition of WO_{2.96} is known to result from the reduction of stoichiometric trioxide at high temperatures (ca. 1050-1250 °C) under high vacuum.7 Therefore, the composition of the evaporated amorphous film was believed to be between WO3 and WO2.96 or a mixture of these. Heating of the amorphous blue film (WO_{3-x}) reduced it to WO_{2.96}, which is reported to be dark blue,⁷ and enhanced its crystallinity.

Similar amorphous blue tungsten oxide films have been prepared by a radio-frequency reactive sputtering technique. The films, prepared under a low oxygen sputtering atmosphere, had a blue color, n-type semiconducting properties, and much lower resistivity compared with that of WO₃.

Characterization of WO_{3-x} Powder. X-ray diffraction of WO_{3-x} powder also showed several sharp peaks, but it was difficult to identify its structure. The stoichiometry of this WO_{3-x} powder may be between WO₃ and WO_{2.96}. The crystal size of the WO_{3-x} powders was ca. 150 Å as calculated from the X-ray diffraction peak.⁹ The surface area of the WO_{3-x} powders was 48 m²/g (BET).

(10) Reichman, B.; Bard, A. J. J. Electrochem. Soc. 1979, 126, 2133 and

TABLE II: Results of Photoreactions in Gas Phase

film	conditions	wt of film, mg	irradn time, h	yield, μg	yield, μg/h
WO _{3-x}	thick film on Pyrex beads	950	280	35	0.125
WO _{2.96}	thin film on quartz tube	27	970	106	0.109
WO ₃	thin film on Pyrex	6.9	400	81	0.202

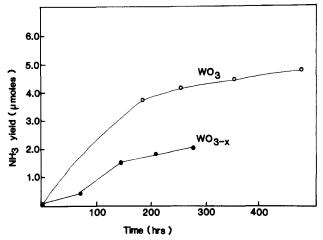


Figure 2. Yield of NH_3 vs. time for WO_{3-x} (coated beads, 0.95 g) and WO_3 (apparent surface area 100 cm², 1000-Å thickness).

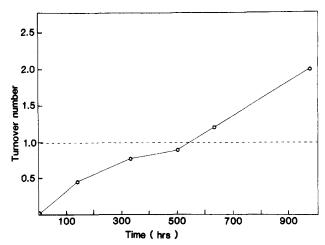


Figure 3. Yield of NH_3 vs. time for $WO_{2.96}$ (apparent surface area 113 cm², 3300-Å thickness).

Figure 1 shows the absorbance of the evaporated tungsten blue and WO₃ films. The band gap of both the blue tungsten oxide was near 2.8-3.0 eV from the measurement of the absorbance onset. The broad absorbance for the blue tungsten oxide around 800 nm is believed to be due to the oxygen deficiency in the structure.^{7,8}

Photoreaction—Gas Phase. The results are summarized in Table II. Figure 2 shows the yields of NH₃ on WO_{3-x}-coated beads (apparent surface area 200 cm², 0.94 g of WO_{3-x}). The yields of NH₃ were roughly proportional to the irradiation time. No N₂H₄ was detected in the HCl trap. No NH₃ was produced when the N₂ gas was passed through the reactor which was heated at 100 °C in the dark. During irradiation the blue color of WO_{3-x} changed partially to yellow, the color of WO₃. This phenomenon implied that the reaction might proceed by a simple thermal path (eq 1), rather than a photocatalytic one. To ensure that this

$$WO_{2.96} + 0.04H_2O + (0.04/3)N_2 \rightarrow WO_3 + (0.08/3)NH_3$$
(1

reaction was not the sole source of NH₃, the photoreaction was run with a thin film of heat-treated WO_{2.96} (27 mg, thickness 3300 Å, apparent surface area 100 cm²) for a sufficient time to produce a quantity of NH₃ above the maximum stoichiometric amount of eq 1, i.e., to demonstrate a turnover of catalyst greater than

⁽⁶⁾ Bailar, J. C.; Emeleus, H. J.; Nyholm, R.; Trotmann-Dickenson, A. F. Comprehensive Inorganic Chemistry; Pergamon: New York, 1973; Vol. 3, p. 763

⁽⁷⁾ Gebert, E.; Ackermann, R. J. Inorg. Chem. 1966, 5, 136.
(8) Miyake, K.; Kaneko, H.; Teramoto, Y. J. Appl. Phys. 1982, 53, 1511.
(9) Azaroff, L. V.; Buerger, M. J. In The Powder Method in X-ray Crystallography; McGraw-Hill: New York, 1958.

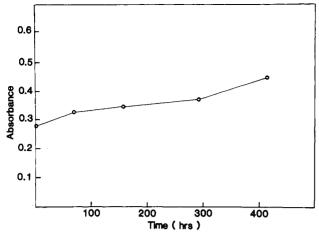


Figure 4. Absorbance of WO₃ film at 800 nm vs. time.

1. Figure 3 shows the number of turnovers of catalyst vs. irradiation time. The NH₃ yield was again roughly proportional to the irradiation time, and the number of turnovers exceeded unity. During this experiment, no color change was observed.

Irradiation of WO₃ films under a humid N₂ atmosphere also resulted in the formation of NH₃, as shown in Figure 2. In the dark, no NH₃ was produced. Analysis for N₂H₄ in the reaction vessel and trap was negative.

In another experiment, small dosages (ca. 0.05 mL/min at STP) of gaseous formaldehyde (CH₂O) were pumped through the WO₃ reaction vessel along with H₂O and N₂. It was hoped that CH₂O would serve as a hole scavenger, since it is much easier to oxidize than H₂O, and the yield of NH₃ would increase. The initial yield of NH₃ was found to decrease and the photolysis stopped. The CH₂O did scavenge the valence band holes, but the photogenerated electrons remained in the lattice and resulted in a change in morphology of WO₃ to that of a tungsten bronze:^{11,12}

$$WO_3 + yH^+ + ye^- \rightleftharpoons H_vWO_3$$
 (2)

This reaction occurred rapidly relative to the NH₃ production rate. Irradiation for 8 h resulted in a tungsten bronze where y is about 0.1 as measured by the absorbance at 800 nm using Smakula's equation.¹² At this point, the catalyst was intensely blue. X-ray analysis confirmed bronze formation (ASTM 6-0210).

The absorbance of the WO₃ catalyst irradiated at 800 nm under the N₂/H₂O atmosphere in the absence of CH₂O also increased, but very slowly compared to the rate when the hole scavenger was present (Figure 4). This again indicates bronze formation.

Electrochemical Measurements. A number of electrochemical measurements of polycrystalline tungsten oxide materials have been reported. 10 Figure 5 is a typical current-potential curve for heat-treated WO_{3-x} (evaporated on W foil) in 1 M HCl. During anodic polarization the current was limited to a very low level. During cathodic polarization the WO_{3-x} electrode was further reduced to lower oxidation states¹³ or to a hydrogen tungsten bronze,11,14 which could be reoxidized by a subsequent anodic sweep. During these polarizations, the blue color of the WO_{3-x}

Figure 6 shows the Mott-Schottky plot of the heat-treated WO_{3-x} electrode. The capacitance measurements demonstrate that this material is a degenerate semiconductor. Mott-Schottky plots were frequency dependent and nonlinear. The capacitance values obtained were very large and of the order of the Helmholtz layer capacitance. This can probably be attributed to the complexity of the evaporated WO_{3-x} film, e.g., polycrystalline structure, presence of surface states arising from oxygen deficiencies, 15 and

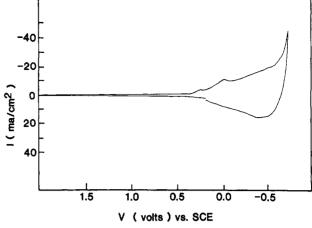


Figure 5. Current-potential behavior for a heat-treated WO_{3-x} electrode in 1.0 M HCl at 20 mV/s.

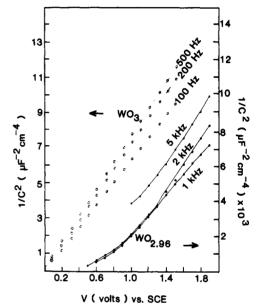


Figure 6. Mott-Schottky $(1/C^2 \text{ vs. } V)$ plot for WO_{2.96} (closed circles) and WO₃ (open circles) in 1.0 M HCl. Note the different scales.

nonuniform dopant density. Capacitance measurements on a WO3 electrode did give linear Mott-Schottky plots (Figure 6) suitable for determining the flat band potential. The flat band potential (V_{fb}) was estimated to be ca. +0.2 to +0.3 V vs. NHE at pH 0 from extrapolation of the capacitance curves. Note that, for WO₃ and the tungsten blue oxides, the band gap energy and flat band potential depend upon the method of preparation. 16-19

With reduction of N₂ to NH₃, there is concomitant oxidation of H₂O to O₂. The overall reaction of NH₃ with O₂ at the illuminated semiconductor is a possible back-reaction that would result in lower yields of NH₃.²⁰ This photocatalytic (thermodynamically downhill) reaction occurs via reaction of the NH3 with photogenerated holes with reduction of O₂ by electrons. To investigate this reaction, a sealed reaction vessel with an atmosphere of H_2O -saturated O_2 and about 2.0×10^{-6} mol of NH₃ was illuminated by using a WO₃ catalyst under the same conditions as in the NH₃ synthesis studies. After 20 h, only about 40% of the NH₃ remained. In the dark, there was no loss of NH₃. Thus, the NH₃/O₂ back-reaction undoubtedly results in lower yields of NH₃. This experiment demonstrates the importance of removal

⁽¹¹⁾ Reichman, B.; Bard, A. J. J. Electrochem. Soc. 1979, 126, 583.
(12) Deb, S. K. Philos. Mag. 1973, 27, 801.
(13) Chang, J. H.; Gilbert, B. L.; Sun, T. J. J. Electrochem. Soc. 1975,

⁽¹⁴⁾ Hersh, H. N.; Kramer, W. E.; McGee, J. H. Appl. Phys. Lett. 1975, 27, 646.

⁽¹⁵⁾ Morrison, S. R. In Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum: New York, 1980; p 166.

⁽¹⁶⁾ Gissler, W.; Memming, R. J. Electrochem. Soc. 1977, 124, 1710.

⁽¹⁷⁾ Hardee, K. L.; Bard, A. J. J. Electrochem. Soc. 1977, 124, 217. (18) Butler, M. A.; Nasby, R. D.; Quinn, R. K. Solid State Commun. 1976. 19, 1011

⁽¹⁹⁾ Hodes, G.; Cahen, D.; Mannasen, J. Nature (London) 1976, 260, 312. (20) Mozzanega, H.; Herrmann, J.-M.; Pichat, P. J. Phys. Chem. 1979,

TABLE III: Results of Dark and Photoreactions in Aqueous Phase

	catalyst	NH ₃ /yield, μg			
catalyst	wt, g	irradiated	dark	remarks	
WO _{3-x}	0.58	12.2		as evaporated	
WO_{3-x}	0.20		3.0	as evaporated	
WO ₃	0.58	<1.0		oxidized in air at 500 °C for 4 h	
WO_{3-x}	0.20	3.5	3.4	reduced in H ₂ at 400 °C for 4 h	
WO_{3-x}	0.20	2.5	2.3	reduced in H ₂ at 500 °C for 4 h	
Pt/WO _{3-x}	0.20	20.7	18.7	H ₂ PtCl ₆ impregnated H ₂ reduction at 400 °C for 4 h	
RuO_2/WO_{3-x}	0.20	24.3	21.4	RuO ₂ ground in mortar	
$RuO_2 + Pt/WO_{3-x}$	0.20	35.9	36.2	RuO ₂ + Pt/WO _{3-x} ground in mortar	
TiO ₂	0.20	<1.0		reference system, P25 Degussa	

of the products from the vicinity of the catalyst surface to prevent recombination when carrying out a thermodynamically uphill (photosynthetic) process.

Photoreaction—Aqueous Phase. Experimental results are summarized in Table III. To compare the yields to those in previous reports, TiO₂ (anatase) powder was also tried. Although the apparent NH₃ yields with WO_{3-x} were much higher than that found with TiO₂, the yields in the dark were about the same. Oxidation of the WO_{3-x} powder diminished the ammonia yield. If the reduced tungsten oxide was loaded with Pt, RuO₂, or both, the NH₃ yield increased significantly. However, again the yield in the dark was essentially the same.

Discussion

Gas Phase. For the heterogeneous photoreduction of N_2 on TiO_2 , the following mechanism was proposed. First, H_2O molecules adsorbed on TiO_2 are split into hydrogen and oxygen on irradiation with near-UV light, followed by reaction of the N_2 with hydrogen to produce NH_3 (or N_2H_4). The formation of NH_3 on irradiated tungsten oxide can be interpreted by a similar mechanism, with N_2 reacting with H_2 formed from water under illumination.

$$^{1}/_{2}N_{2} + ^{3}/_{2}H_{2} \rightleftharpoons NH_{3}$$
 (2)

The equilibrium constant of eq 2, K_p , can be calculated from ΔG° for this reaction $(-3.94 \text{ kcal/mol})^{21}$ to yield

$$K_{\rm p} = \frac{p_{\rm NH_3}}{p_{\rm H_2}^{3/2} p_{\rm N_2}^{1/2}} = 773 \tag{3}$$

Therefore, $p_{\rm NH_3} = 773 \times p_{\rm H_2}^{3/2}$, where $p_{\rm N_2} \simeq 1$ atm. Based on our measurement, the flat band potential of WO_{3-x} is about +0.2 V vs. NHE at pH 0. We assume the activity of proton on the catalyst surface is unity, since the valence band energy of WO₃ is positive enough to oxidize water to O₂ and H⁺. We further assume that the $V_{\rm fb}$ measured in solution is representative of the gas-phase $V_{\rm fb}$, since the pzzp (point of zero zeta potential) for WO₃ is at approximately pH 0.²² The hydrogen equilibrium pressure

(22) Parks, G. A. Chem. Rev. 1965, 65, 177.

at +0.2 V vs. NHE can be calculated by the Nernst equation

$$E = E^{\circ} + 0.059 \log (a_{\text{H}}^{+}/p_{\text{H}})$$
 (4)

where E = +0.2 V vs. NHE, $E^{\circ} = 0.00 \text{ V}$, and $a_{\text{H}}^{+} \simeq 1$. Under these conditions $p_{\rm H_2} = 4 \times 10^{-4}$ atm. If the equilibrium in eq 2 is attained during the experiment, the equilibrium pressure of NH₃ would be about 6×10^{-3} atm. The NH₃ yield on WO_{2.96} for 100-h irradiation was 16 μ g at a N_2 flow rate of 36 mL/min. The maximum (equilibrium) NH3 yield calculated as the equilibrium pressure × total N₂ volume, would be much larger, ca. 1 g of NH₃. Thus, although $V_{\rm fb}$ is several tenths of a volt positive of the E° for the H⁺, H₂ (or N₂, NH₃) reaction, the yields found are well within the expected values for a flow system. The low yield of NH₃ in the gas-phase photoreaction can be attributed to several factors. Since there are no available counterions (as there are in solution) to compensate for the charge of photogenerated electrons and holes, e⁻h⁺ recombination is probably extensive. Moreover, even with a continuous flow of N_2 , some oxidation of NH₃ with photogenerated holes must occur. During the photoreduction of NH₃ on WO_{3-x}, the color of the amorphous WO_{3-x} film became slightly more yellow, while the color of the WO_{2.96} crystalline film did not. Charge transport through an amorphous WO_{3-x} film is more rapid than through crystalline $WO_{2.96}$. For example, amorphous WO_{3-x} films on electrode surfaces show electrochromic behavior and can be rapidly reduced to a blue coloration, while annealed and more crystalline films cannot.¹⁰ Thus, WO_{3-x} is less stable and may be gradually oxidized to WO₃ by holes or by generated O₂ irradiation. On the other hand, crystalline WO_{2.96} should be more stable and the oxidation of WO_{2.96} should be much slower. The yield of NH₃ from illuminated WO₃ slowly decreased with time (Figure 2). This is attributed to tungsten bronze formation, since the rate approached that of WO_{3-x} . In our experiments, no N_2H_4 was detected. Since N_2H_4 is known to be unstable and easily oxidized, any N2H4 would probably readily decompose on the irradiated WO_{2.96} or WO₃.

Aqueous Systems. In our studies the apparent ammonia yields with WO_{3-x} were much higher than those with TiO_2 . However, the yields of NH_3 on WO_{3-x} in the dark were essentially the same as under illumination, except for amorphous WO_{3-x} . Loading the WO_{3-x} with Pt or RuO_2 significantly increased the apparent NH_3 yields, but again the yields in the dark were about the same. Therefore, the ammonia synthesis reaction in aqueous solution occurs predominantly by a thermal path (1), rather than by a photosynthetic one. Since the stoichiometry of evaporated WO_{3-x} powder is considered to be between $WO_{2.96}$ and WO_3 , it may not be stable under oxidation conditions like the amorphous WO_{3-x} film in gas phase, and the thermal reaction (1) may become dominant. Moreover, the state of surface water on WO_{3-x} is very different for dispersed powders in the aqueous phase than for films in the gas phase; this might also affect the rate of WO_{3-x} oxidation.

Conclusion

The photoreaction of moist N_2 and water produces NH_3 on irradiated blue tungsten oxides and tungsten trioxide in the gas phase. The photoreaction showed a larger production of NH_3 than could be accounted for by the degree of reduction of the tungsten oxide (i.e., turnover greater than one). The active species was $WO_{2.96}$. This photoreduction can account for the ammonia blanks found when tungsten oxide is used as an adsorbent for NH_3 . With an aqueous dispersion of WO_{3-x} powder, N_2 was reduced to ammonia through a thermal chemical (not photochemical) reaction.

Acknowledgment. The support of this research by the National Science Foundation (CHE8304666) is gratefully acknowledged. We also thank Dr. O. Enea for many helpful discussions.

⁽²¹⁾ CRC Handbook of Chemistry and Physics; CRC: Cleveland, OH, 1984-1985; p D-77.