Variation of the heterogeneous electron-transfer rate constant with solution viscosity: reduction of aqueous solutions of [(EDTA)chromium(III)]- at a mercury electrode

Xun Zhang, Hongjun Yang, and Allen J. Bard

J. Am. Chem. Soc., 1987, 109 (7), 1916-1920 • DOI: 10.1021/ja00241a005

The permalink http://dx.doi.org/10.1021/ja00241a005 provides access to:

• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article
However, we have no information on the stoichiometric charge number on the surface of tungstic acid colloid. Thus, we estimated the amount of free protons from the solution conductance and from the reference values of equivalent conductance of protons. The evaluated D_i values for our system were in the range of several thousand angstroms. This correction term then became quite significant for the smaller colloids. The triangles in Figure 8 show the values of D_i calculated from Perrin's equation with use of effective semiaxes including Debye-length. The dashed line indicates the rotational diffusion constant estimated by using crystallographic size. The increasing tendency of D_i with concentration is clearly the same as that shown by the triangles, though the absolute values are slightly different. This deviation is believed to be due to the rough estimation of the amount of free protons.

The significance of the Debye-length has often been pointed out for the solution properties of various colloids and polyelectrolytes in salt-free systems such as the ordered solution structure of monodispersed lattice, conformation of ionic flexible protons, and very low mobility of spherical colloids at extremely low ionic strength.

Next, we examined the viscosity effect of solvent on the relaxation times. In Figure 9 the relaxation times are given for the mixture of propylene glycol and water. τ and τ_0 are the relaxation times observed for the mixture and water, respectively. Five kinds of ellipsoidal colloids were used, of which 2c varies from 15 600 to 31 300 Å. The solid line shows log η/η_0 for the water–propylene glycol mixture, where η and η_0 stand for the viscosities of the mixture and pure water, respectively. Equations 1 and 2 tell us that τ should increase proportionally to the increase in the viscosity of solvent. The τ values increased with viscosity as is shown in Figure 9. However, the log τ/τ_0 term was slightly smaller than the log η/η_0 value especially for small colloids. This must be due to the significant contribution of the Debye-length discussed above, though a quantitative discussion is difficult because of the changes in the dielectric constant of the solvent mixture.

Conclusions

A new and convenient way of determining the rotational diffusion coefficient (D_i) was successfully achieved by the SP–SF and CSF techniques for the ellipsoidal colloids of tungstic acid. The significant contribution of Debye-screening-length to the D_i values increased with viscosity as is shown in Figure 9. The log τ/τ_0 term was slightly smaller than the log η/η_0 value especially for small colloids. This must be due to the significant contribution of the Debye-length discussed above, though a quantitative discussion is difficult because of the changes in the dielectric constant of the solvent mixture.

Acknowledgment

The author sincerely thanks Professor N. Ise of the Department for his encouragement throughout this work. Useful comments from Professor N. Imai of Nagoya University are also highly appreciated. This work was funded by the Kurata Foundation.

Registry No. Tungstic acid, 7783-03-1.

Variation of the Heterogeneous Electron Transfer Rate Constant with Solution Viscosity: Reduction of Aqueous Solutions of CrIII(EDTA)$^-$ at a Mercury Electrode

Xun Zhang, Hongjun Yang, and Allen J. Bard*

*Contribution from the Department of Chemistry, University of Texas, Austin, Texas 78712.

Received April 11, 1986

Abstract: The one-electron reduction of CrIII(EDTA)$^-$ at a mercury electrode was studied by an AC impedance technique in aqueous solutions of different viscosities (varied by addition of sucrose). The standard rate constant of the heterogeneous electron transfer, k_{et} (corrected for diffuse double layer effects with experimentally measured parameters), showed a significant variation with solution viscosity. This viscosity dependence of k_{et} in the kinetically limited region was interpreted in terms of the dynamic properties of the solvent. A reasonable correlation between k_{et} and the solvent polarity term ($\eta_0^2 - \varepsilon^{-1}$) could be obtained only when the preexponential factor was allowed to vary inversely with solution viscosity.

A variation of the rate constant for heterogeneous electron transfer (et) reactions (k_{et}) with solution viscosity was reported by our laboratory for Fe(CN)$_6^{3-}/$Fe($2+$/3+) in dimethyl sulfoxide, at a Pt electrode. Although this dependence is not predicted by the classical description of et reaction at rates far from diffusion control, more recent theoretical treatments suggest this correlation by emphasizing the role of solvent dynamics in the et processes. Generally, explicit studies of

0002-7863/87/1509-1916$01.50/0 © 1987 American Chemical Society
the influence of solution viscosity on chemical reaction kinetics provide direct tests about the involvement of the solvent dynamics in the activation step, as viscosity is a measure of solvent mobility. Systematic experimental investigations of this type for heterogeneous reactions at electrodes, to our knowledge, have not been carried out. We have been especially interested in the correlation of k' with viscosity (or diffusion coefficient) because of its relevance to the active area of electron-transfer reactions in polymer films and the rates of these reactions in comparison to similar reactions in bulk solution.

The one-electron reduction of Cr(III)(EDTA)²⁻ in weakly acidic aqueous solution (pH 5) was used to study the dependence of the standard heterogeneous rate constant on viscosity. We are particularly interested in aqueous systems, because water is a frequently used solvent in electrochemical studies and the needed physical properties are available for use in simplified expressions to estimate standard rate constants with the consideration of the effect of solvent dynamics (vide infra). The Cr(III)(EDTA)²⁻ metal complex exhibits nernstian cyclic voltammetric behavior for the reduction Cr(III)(EDTA)²⁻ + e = Cr(II)(EDTA)²⁻ at low scan rates with a half-wave potential, E_{1/2}, of -1.15 V vs. Ag/AgCl. It was selected as a test system because it shows well-defined outer-sphere et²⁸ has a heterogeneous rate constant in a range that is accurately measurable by AC techniques in the solutions studied, and it has a relatively low charge among species soluble in H₂O, which minimizes the electrostatic work-term effect on measured kinetics. The standard rate constants were obtained at a hanging mercury drop electrode (HMDE) in solutions in which viscosity was varied by adding different amounts of sucrose. A mercury electrode is especially useful in these studies, because the observed rate constant for double layer effects can be corrected by direct measurement of electrode surface properties in the same solutions. Moreover, the smooth and renewable surface of a mercury electrode makes it unlikely that any observed effects could be caused by partial blockage of the electrode surface, as might be invoked with a solid electrode. Sucrose was chosen as the additive not only because it is electrochemically inert in the potential region studied but also because it can be used to produce a large variation of solution viscosity accompanied by only minor changes of the static dielectric constant. Data on the physical properties of aqueous sucrose solutions are readily available.⁵

Experimental Section

Materials. Na₂[Cr(III)(EDTA(H₂O))²⁻] was prepared from reagent grade Cr₂(SO₄) and ethylenediamine tetraacetatic acid disodium salt (Fisher Chemicals)^{10a}. Sucrose (Aldrich "Golden Label") was added to water (taken from a Milli-Q reagent water system) to vary solution viscosity. Na₂SO₄ (Mcb reagent) was used as supporting electrolyte.

Apparatus. A Model 303 static mercury drop electrode (SMDE) (EG&G PARC, Princeton, NJ) was used as the working electrode for all electrochemical measurements. It was driven by a home-assembled power supply through cable connector J1 on the SMDE. The working electrode was thus a HMDE with the drop size switch selected at the "L" angle, cot⁻¹ of the same viscosity were reproducible to a standard deviation of 10%. The observed heterogeneous et rate constant, k₀, was evaluated from AC impedance measurements^{11,12} at frequencies (f) of 1-3000 Hz. The in-phase and quadrature currents were recorded and analyzed to yield the total impedance of the cell at the DC half-wave potential, -1.15 V vs. Ag/AgCl for all solutions of different viscosity. The et coefficient, α, was assigned a value of 0.5, because the position of the AC voltammetry peak current was independent of frequency.^{12b} (Yamada and Tanaka reported a α of 0.58 from their previous kinetic studies of the same compound.) The conventional tangent of phase angle, cot φ, vs. square root of AC frequency, f^{1/2}, plot was used to obtain k₀ (with the assumption that D_b = D₀). The correction for solution resistance and double layer charging capacitance were made analytically with a short computer program based on standard correction equations.^{12a,13} The observed standard rate constants obtained for solutions of the same viscosity were reproducible to a standard deviation of 10%. During the AC experiment, the phase angle shifted slightly when the sensitivity setting of the lock-in amplifier was changed. An external dummy cell, whose resistance was adjusted to a value comparable to that of the electrochemical cell, was used to set the phase angle to 0, and impedance measurements were performed at the same sensitivity setting.

All experiments were carried out at 22 ± 1 °C. The solutions were deoxygenated with prepurified argon gas. The bubbling and blanketing of the test solution with the gas was carried out for preset times with the SMDE apparatus.

Results

Diffusion Coefficients. A plot of the measured diffusion coefficients, D_b, vs. the reciprocal of the solution viscosity, 1/η, is a straight line which intercepts the origin (Figure 1), as predicted by Stokes–Einstein equation

\[
d = kT/6πηr
\]

where k is Boltzmann constant and r is the hydrodynamic radius of the diffusing species. The observed linear relation between D and 1/η shows that the radius of the solvated Cr(III)(EDTA)²⁻ is Boltzmann constant and r is the hydrodynamic radius of the diffusing species. The observed linear relation between D and 1/η shows that the radius of the solvated Cr(III)(EDTA)²⁻ does not change with variation of the sucrose concentration. The

Figure 1. Plot of the diffusion coefficient, D_b, as a function of the reciprocal viscosity, 1/η, for Cr(III)(EDTA)²⁻ in aqueous 0.3 M Na₂SO₄ solutions containing different amounts of sucrose at 22 °C.
Table I. Experimental Results for Solution Parameters and Rate Constants for the Reaction $\text{Cr}^{III}(EDTA)^- + \epsilon \rightarrow \text{Cr}^{III}(EDTA)^2^-$ at a Mercury Electrode

<table>
<thead>
<tr>
<th>soln no.</th>
<th>sucrose concen (% by wt)</th>
<th>η^a (cP)</th>
<th>D_0 $(10^9 \text{ cm}^2/\text{s})$</th>
<th>C_2 (μF)</th>
<th>σ $(\mu\text{C/cm}^2)$</th>
<th>ϕ_2 (V)</th>
<th>k_{obs}^b (cm/s)</th>
<th>k_{corr}^c (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>1.00</td>
<td>4.4</td>
<td>0.35</td>
<td>9.09</td>
<td>-0.044</td>
<td>0.45</td>
<td>5.9</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>1.11</td>
<td>3.9</td>
<td>0.44</td>
<td>10.09</td>
<td>-0.047</td>
<td>0.14</td>
<td>2.2</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>1.33</td>
<td>3.3</td>
<td>0.45</td>
<td>10.11</td>
<td>-0.048</td>
<td>0.084</td>
<td>1.4</td>
</tr>
<tr>
<td>IV</td>
<td>15</td>
<td>1.59</td>
<td>2.7</td>
<td>0.45</td>
<td>10.10</td>
<td>-0.048</td>
<td>0.065</td>
<td>1.1</td>
</tr>
<tr>
<td>V</td>
<td>20</td>
<td>1.94</td>
<td>2.2</td>
<td>0.45</td>
<td>10.08</td>
<td>-0.048</td>
<td>0.050</td>
<td>0.85</td>
</tr>
<tr>
<td>VI</td>
<td>26</td>
<td>2.57</td>
<td>1.7</td>
<td>0.45</td>
<td>9.96</td>
<td>-0.048</td>
<td>0.049</td>
<td>0.83</td>
</tr>
<tr>
<td>VII</td>
<td>34</td>
<td>4.04</td>
<td>1.1</td>
<td>0.45</td>
<td>9.69</td>
<td>-0.048</td>
<td>0.028</td>
<td>0.64</td>
</tr>
<tr>
<td>VIII</td>
<td>40</td>
<td>6.15</td>
<td>0.69</td>
<td>0.44</td>
<td>9.53</td>
<td>-0.048</td>
<td>0.029</td>
<td>0.49</td>
</tr>
<tr>
<td>IX</td>
<td>48</td>
<td>12.5</td>
<td>0.33</td>
<td>0.43</td>
<td>9.26</td>
<td>-0.048</td>
<td>0.021</td>
<td>0.35</td>
</tr>
</tbody>
</table>

aData taken from ref 9. bHanging drop mercury electrode (0.022 cm2) at 22 °C. cThe solution was 0.3 M Na$_2$SO$_4$, pH 5. Diffusion coefficient, D_0, differential double layer capacitance at dc reversible potential, C_2, observed standard rate constant, k_{obs}, and corrected standard rate constant, k_{corr} (made with measured charge density, σ, and potential at ohp, ϕ_2) in solutions of different viscosities, η, varied by adding sucrose to water.

\[
\sigma_0 = \int \varepsilon E \, dE
\]

(4)

For the mercury electrode in an aqueous 0.3 M Na$_2$SO$_4$ solution, E_s was determined from electrocapillary measurements to be -0.45 V vs. SCE and was not changed significantly with the addition of sucrose.\(^{11}\) Experimental values of σ_0 at the DC half-wave potential in solutions of different viscosity are given in Table I. Also contained in Table I are ϕ_2 values calculated from these experimentally measured σ_0 values for each solution. They are virtually independent of the sucrose concentration over the region studied. The corrections of the rate constants for the potential drop across the diffuse layer were then made with these ϕ_2 values. These k_{corr} values are also listed in Table I.

Calculation of Rate Constant Based on Dielectric Continuum Theory. According to the classical treatment of outer-sphere et reactions, the standard rate constant is related to the activation free energy barrier, ΔG^\ast, by\(^{2,3}\)

\[
k_{corr} = k_A \exp(-\Delta G^\ast/RT)
\]

(5)

where k_0 is the electronic transmission coefficient and A the nuclear factor. The activation free energy, ΔG^\ast, can be treated as the sum of two terms.\(^{2,3}\) One refers to the inner reorganization energy of reactants, corresponding to the molecular structural changes of the reactant. The other refers to the solvent reorganization. For the reduction of Cr(EDTA)$^-$, the main contribution of ΔG^\ast is expected to be the solvent reorganization energy, ΔG_{sol}^\ast, the inner reorganization energy, ΔG_{in}^\ast, is probably small according to the observed facile et behavior of the complex. We could not estimate ΔG_{in}^\ast from the bond length changes, because structural data for the Cr(EDTA)$^2^-$ are not available. An attempt to grow a single crystal of H$_2$Cr(EDTA) for an X-ray diffraction measurement was unsuccessful. A nonzero ΔG_{in}^\ast value for the homogeneous et reaction was estimated from a pseudoexchange study of Cr(EDTA)$^-$ in lutidene or acetate buffered solutions.\(^{10}\) This ΔG_{in}^\ast value probably does not apply under our conditions, because recent deuteron NMR results showed that the presence of acetate salt would likely convert the sextedentate EDTA complex to the quinuedentate one at this pH.\(^{16}\) This change would strongly affect the ΔG_{in}^\ast value. In our present calculations of the total activation energies, ΔG_{in}^\ast was neglected to obtain the estimated rate constants. This neglect of the unknown, but probably small,

inner reorganization energy does not have a major effect on the discussion of the et reaction kinetics, which are focused on the effects of solvent dynamics (vide infra). In attempting to calculate absolute numerical values of the rate constants, this neglect would certainly introduce errors, depending upon the actual magnitude of G^a. Similar uncertainties arise (e.g., uncertainties in reactant radii) and are often involved in such calculations. The solvent reorganization energy can be estimated from the solvation energetics of reactant, employing the Born model:

$$
\Delta G^a = (N e^2 / 32 \pi \sigma_0)(1/r - 1/2d)(1/\epsilon_\text{opt} - 1/\epsilon_s) \tag{6}
$$

where N is Avogadro's constant, e is electron charge, r is the radius of reactant (taken here as 4.9 Å as estimated from the D values and eq 1), d is the distance from electrode to the reaction layer, and ϵ_opt and ϵ_s are the optical and static dielectric constants, respectively. $\epsilon_\text{opt} = n_D^2$ for nonabsorbing liquids,17,18 where n_D is the refractive index.

The nuclear frequency factor, A, has sometimes been estimated from the gas-phase collision number involving hard spheres, Z. In case of heterogeneous reactions,5,6

$$
Z = (kT / 2\pi m)^{1/2} \tag{7}
$$

where m is the molecular mass of reactant. By applying eq 6 and 7 to the present electrode reaction, the standard rate constants were calculated; these are listed in Table II for the different solutions. ϵ_0 was taken to be unity with the assumption that the et reaction proceeds adiabatically.

Calculation of the standard rate constants was also made with the nuclear frequency factor obtained from the following equation:

$$
A = K_p(1/2\pi \tau_L)(\Delta G^a / RT)^{1/2} \tag{8}
$$

This equation has been derived by using the encounter quasiequilibrium model with inclusion of effects of solvent dynamics on the et reaction in polar media.4,5 The equation is applicable for weakly adiabatic et processes in "overdamped" solvents.4 In eq 8, K_p is the equilibrium constant of the precursor formation,4,6 and τ_L is the longitudinal dielectric relaxation time of the solvent, which is related to the Debye relaxation time, τ_D, by τ_D.

$$
\tau_L = (e_0 / e_s)\tau_D \tag{9}
$$

where e_opt is the dielectric constant at high frequency. For water, e_opt is ca. 4.3 at 25 °C (assigning $e_\text{opt} = n_D^2$).13 Calculations of the standard rate constants based on eq 6 and 8 were performed by assigning $e_\text{opt} = 6 \times 10^5$ cm (assuming the et reaction is adiabatic only for the closest approach of the reactants to the electrode surface 6,20 and evaluating τ_D from the Debye equation11,18

$$
\tau_D = 4\pi a^2 n / kT \tag{10}
$$

where a is the radius of the H$_2$O molecule and n is the viscosity of the bulk solution. The results obtained are also listed in Table II.

Table II. Calculation of the Standard Rate Constant of Heterogeneous et Reaction in the Sucrose-Water System with Two Different Methods of Evaluating the Preexponential Factor

<table>
<thead>
<tr>
<th>soln no.</th>
<th>t_L</th>
<th>$c_\text{opt} = (n_D^2)$</th>
<th>$(1/n_D^2 - 1/\epsilon_s)$</th>
<th>τ_L (ps)</th>
<th>k_{cal}</th>
<th>k_{cal}^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>79</td>
<td>1.78</td>
<td>0.550</td>
<td>0.45</td>
<td>1.2</td>
<td>3.9</td>
</tr>
<tr>
<td>II</td>
<td>78</td>
<td>1.79</td>
<td>0.545</td>
<td>0.51</td>
<td>1.3</td>
<td>3.6</td>
</tr>
<tr>
<td>III</td>
<td>77</td>
<td>1.82</td>
<td>0.537</td>
<td>0.63</td>
<td>1.5</td>
<td>3.3</td>
</tr>
<tr>
<td>IV</td>
<td>76</td>
<td>1.84</td>
<td>0.531</td>
<td>0.77</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>V</td>
<td>74</td>
<td>1.86</td>
<td>0.524</td>
<td>0.98</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>VI</td>
<td>72</td>
<td>1.89</td>
<td>0.516</td>
<td>1.36</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>VII</td>
<td>70</td>
<td>1.91</td>
<td>0.505</td>
<td>2.21</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>VIII</td>
<td>68</td>
<td>1.96</td>
<td>0.496</td>
<td>3.56</td>
<td>2.7</td>
<td>1.0</td>
</tr>
<tr>
<td>IX</td>
<td>65</td>
<td>2.00</td>
<td>0.483</td>
<td>7.73</td>
<td>3.2</td>
<td>0.55</td>
</tr>
</tbody>
</table>

*Data taken from ref 9. *Calculated longitudinal relaxation time, τ_L, from eq 9 and 10. *Calculated standard rate constants from eq 6 and 7. dCalculated standard rate constants from eq 6 and 8. *iStatic dielectric constant; c_opt, optical dielectric constant; n_D, refractive index.

Discussion

Dependence of k_{cal} on n. After the double layer correction, based on experimentally measured parameters, k_{cal} was found to show a significant variation with solution viscosity (Figure 3). Since the rate of the et reaction was not near the diffusion-controlled region over the viscosity region studied, the dependence of k_{cal} on n reflects the importance of viscosity-related solution properties on the heterogeneous et kinetics. The interpretation of the dependence could be made on the basis of the influence of the solvent dielectric relaxation dynamics on the activation processes of the et reaction. As previously seen in eq 8, an important prediction drawn from this treatment is that the nuclear frequency factor depends inversely on the longitudinal dielectric relaxation time of the solvent. The longitudinal relaxation time can be estimated from eq 9 and 10. A dependence of k_{cal} on n is thus established. Estimation of the Debye relaxation time, τ_D, from the bulk solution viscosity, n, based on eq 10 is probably only a rough approximation for the present water–sucrose system. A correlation between τ_D and n, however, is expected. Previous experimental results actually show a systematic increase of the principal relaxation time of water with an increase in the concentration of various added nonelectrolyte materials.14
A dependence of the rate constant on viscosity has been explained for a more general case, an elementary chemical transformation reaction occurring in a solvent cage.20 Basically, a dependence would be observed if the activation step for the passage of the reactants from initial to transition state not only requires energy for the reorganization of the medium but also is coupled to the dynamics of the reorganization processes. This requires that the relaxation time of the medium be longer than, or comparable to, the time the reaction complex stays in the transition state; this is probably the case for certain outer-sphere et reactions. A formula to estimate the nuclear frequency factor for chemical transformation reactions that involve changes in volume and/or shape of the reaction complex is very similar to eq 8,20

\[
\ln k^* = \ln K_0 - \left(\frac{2}{3} - \frac{2}{3} \epsilon_e^2\right) \left(\frac{1}{nD} - \frac{2}{3} \epsilon_e^2\right) /
\]

\[
\frac{1}{nD} - \frac{2}{3} \epsilon_e^2
\]

Constant on viscosity observed here for electrode reactions also presented in Figure 4 do not rule out a correlation between \(k^*\) and \((n_D - 2 \epsilon_e)\) as suggested by eq 6. The observed rate constants did not increase with a decrease of solvent polarity probably because of the overriding influence of viscosity, since the polarity change was accompanied by a much greater change in solution viscosity. A dotted line \(B\), calculated with the same equations as used for line \(B\) but assigning \(k_{\text{ref}} = 0.1 \, \text{Å}\), was also drawn in Figure 4. With respect to the choice of \(K_0\), line \(B\) may be considered more internally consistent with line \(A\) than line \(B\), because the preexponential factor for line \(A\), given by eq 7, is less than \(10^4\) cm s\(^{-1}\). This value can be rewritten as \(k_{\text{ref}} \epsilon_e\), where \(\gamma\) is a frequency factor for motion along the reaction coordinate. If \(\gamma \sim 10^4\) cm s\(^{-1}\), as is often assumed, then \(k_{\text{ref}} \epsilon_e < 0.1 \, \text{Å}^{2}24\). As is evident in Figure 4, for the present system, the calculated "solvation equilibrated" rate constant (line \(A\)) is larger than the calculated "solvent dynamic controlled" ones (line \(B\)) in the solvent polarity region studied. Thus, based on these calculated results, the theory46 would also predict the reaction rate constant to follow the "solvent dynamic controlled" behavior as observed in the experiment.

A line was drawn through the first eight points in the \(k^*_{\text{ref}}\) vs. \(1/\eta\) plot, it did not intercept the origin (see Figure 3, circles). Better linearity and an intercept of zero were obtained for \(k_{\text{norm}}\) vs. \(1/\eta\) (see Figure 3, stars). Here \(k_{\text{norm}}\) was defined as

\[
k_{\text{norm}} = k_{\text{ref}} \exp\left(\frac{\Delta G_{\text{os}} - \Delta G_{\text{a}}^{\text{ref}}}{RT}\right)
\]

where \(\Delta G_{\text{os}}^\text{a}\) is the free energy barrier for the solvent being considered and \(\Delta G_{\text{a}}^\text{os}\) is the free energy barrier for a "reference solution", both calculated from eq 6. Since the free energy barrier only varies with solvent polarity according to eq 6, \(k_{\text{ref}}\) is actually the standard rate constant that would be obtained if the solvent polarity term, \((n_D - 2 \epsilon_e)\), was kept constant, at the value of the "reference solution". Thus, the variation of \(k_{\text{norm}}\) in solutions with different sucrose concentrations would reflect the viscosity dependence alone. The plot of \(k_{\text{norm}}\) vs. \(1/\eta\) in Figure 3 suggests that the nuclear frequency factor \(\alpha = \alpha' / \eta\) with \(\alpha' \sim 4 \times 10^4\) (cm-P) s for the present system. This inverse proportionality between \(A\) and \(\eta\) is also predicted by eq 8 along with eq 9 and 10.

Conclusion

Detailed experimental examination of the electrochemical kinetics for the reduction of Cr(III)(EDTA)\(^{3-}\) in water–sucrose solutions at a mercury electrode reveals a significant variation of the heterogeneous et rate constant with solution viscosity. The observed variation can be explained by the involvement of solvent dielectric relaxation dynamics in the et processes, since the solvent relaxation time and viscosity vary in the same direction. Other factors, such as the reorientational dynamics of reactant coupled with the activation processes, may also contribute. Correlation between the experimental rate constants and the solvent polarity term \((n_D - 2 \epsilon_e)\), predicted by Marcus in the formula for the estimation of solvent reorganization free energy in an outer-sphere et reaction, eq 6, is reasonable, when the effect of viscosity on the preexponential factor is taken into account. The variation of rate constant on viscosity observed here for electrode reactions also holds for other types of chemical reactions.20

Acknowledgment. The support of the National Science Foundation (CHE83042135) is gratefully acknowledged.

Registry No. Cr(III)(EDTA)\(^{3-}\), 16091-77-3; Na\(_2\)SO\(_4\), 7757-82-6; Cr(III) (EDTA)\(^{3-}\), 12358-56-4; Hg, 7439-97-6; sucrose, 57-50-1.

(24) Marcus, R. A., private communication. We are indebted to Professor Marcus for suggesting this alternative.