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Abstract 

The diffusion problems for a wide class of microelectrodes are shown to be reducible to multidimen- 
sional integral equations (equations containing multiple integrals). The formulation and solution of 
these problems by means of integral transformations are given for several types of microelectrode 
systems: a microdisk embedded in an insulating plane or in an insulator of a finite thickness, a 
microband, a scanning electrochemical microscope and an array of inlaid planar arbitrarily-shaped 
electrodes. Every solution obtained is suitable for a simple electrode reaction with any values of 
heterogeneous electron transfer kinetic parameters and for any shape of signal applied to the electrode. 
Analogous equations may be derived for some other mechanisms (e.g. electrochemical). The equations 
are similar to each other, and quite similar algorithms are required to solve them. No solutions of 
integral equations of this type have previously been published. An algorithm and FORTRAN programs for 
computing the polarization curves for the inlaid microdisk were devised, and chronoamperograms and 
cyclic voltammograms were computed. The derived equations and results are compared with known 
analytical solutions and simulations. 

INTRODUCTION 

The complexity of the mathematics used by electrochemists is always deter- 
mined by the character of the objects they want to study. Up to the early 195Os, 
when the objects of electrochemical research were relatively simple (e.g. steady- 
state currents; uncomplicated electrode reactions at spherical liquid (mercury) 
electrodes or at planar electrodes), analytical solutions were available for most 
electrochemical systems considered [l]. Later, the incorporation of more compli- 
cated mechanisms and more complicated electrochemical methods led to the 
development of various types of semi-analytical techniques, such as integral equa- 
tions 12-41 and infinite series 151. These have largely been replaced by different 
variations of digital simulation [6,7], which appeared to be quite straightforward in 
the case of a complicated mechanism or special electrode geometry. Even these 
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powerful numerical (simulation) techniques have limitations, however. While they 
can be readily employed for processes with coupled chemical stages (especially of 
higher order), simulation of some systems with complex geometries (e.g. electrode 
arrays, partially blocked electrodes, rough electrodes) can require enormous com- 
putation times. Some systems can be simulated, but with some approximations. A 
well-known example involves electrochemistry at various planar microelectrodes 
[8]. For most of them, such as disk [9-241, band [25-271 or ring [28,29] electrodes, 
analytical and numerical solutions have been published which describe simple 
electrode processes or some mechanisms with coupled chemical reactions. How- 
ever, the analytical (or semi-analytical) solutions are usually available only for 
simple situations, e.g. a current transient under diffusion control, and the numeri- 
cal solutions do not meet all of the needs of the experimentalist; consequently, 
there is a large flow of new papers on the development of microelectrode theory 
(see, for example, refs 21-24, 29). 

Previously [30,31], it was shown that by using integral equations one can 
uniformly describe a simple electrode reaction at planar or spherical electrodes, 
processes with coupled chemical reactions of the first order, or the nucleation- 
growth process under conditions of any electrochemical method. The algorithms 
[32,33] were always simpler than those in known numerical methods. We describe 
here a new semi-analytical technique which is quite general and can handle some 
problems that are difficult to simulate numerically. 

THEORY 

It is well known [34] that diffusion towards a uniformly accessible electrode (e.g. 
planar, spherical, or cylindrical) can be described by Fick’s equation with one 
spatial variable. For a non-uniformly accessible electrode, the concentration distri- 
bution in general can be found from the three-dimensional Fick equation. Particu- 
lar geometries which are important in practice usually possess some type of 
symmetry, allowing two-dimensional (2D) equations in rectangular (band) or cylin- 
drical (disk, ring) coordinates to be used. We start with the 2D case. 

Inlaid disk and rings 

The diffusion problem for a simple electrode process in cylindrical coordinates 
is of the form: 

ace, -=D 
a2c, a2c, 1 acox 

aT 
-+- - 

az2 aR2 +ii aR 

O<Z,OrR,O<T (1) 
i ac, 

+xaR 
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T=O, R>O, Z>O C,( T, R, Z) = c”, C,( T, R, Z) = 0 (2) 

T>O, R+Z+w C&T, R, Z) + Coax CAT, R, Z) + 0 (3) 

T>O,R>O,Z=O 

f&T, RI =D 
G,x(T, R, Z) 1 [ = -D %(T, R, Z) 

= i(T, RI (4) 
az 

z=o az 1 z-o nF 

where 

i(T, R) =nFk,(C,,(T, R) exp{-afi[E(T) -E”]} 

-C,(T, R) ew{[l -alfi[E(T) -rl}) 
and f = F/RT. 

The total faradaic current is represented by 

(5) 

I(T) =2~_/i(T, R)R dR (6) 
A 

The above formulation contains two assumptions: (i) only one oxidized form is 
present in the solution initially, and (ii) diffusion coefficients of the oxidized and 
reduced forms are equal. The first assumption is chosen only because it was used 
in previous work. The second one leads to a well-known consequence 

C,,(T, R, Z) + C,(T, R, Z) = C”, (7) 

which allows one to solve for only C, or C, (eqn. (1)) and therefore makes the 
derivation much shorter. Actually, neither of these assumptions is essential for 
further consideration. 

It should be noted that the boundary condition (4) holds for the conducting part 
of the electrode plane; for the insulating part, eqn. (4) holds with both the faradaic 
current and the diffusional flux equal to zero. Moreover, the conductive surface 
need not be continuous. Consequently, the given formulation is suitable not only 
for a disk or a ring, but also for any arrangement of a disk and a set of concentric 
rings (Fig. 1). 

Using dimensionless variables 

Z R DT Cox ,?J=- r=- 
Ro Rll 

t=---.- 
R: 

ccl-- 
c”, 

f(t, r) = [ ac(r;;’ “],=,= -&f&', R) (8) 

and taking into account eqn. (71, one can rewrite the problem (eqns. (l)-(6)) as 

ac a2c a2c i ac 

at- az2 --+&7+-G O<t,Olr,O<z (9) 

t=O, r20, z>O c( t, r, 2) = 0 (10) 
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Fig. 1. A scheme of a planar system with cylindrical symmetry. The disk and surrounding rings are 
inlaid. 

t>O,r+.z--tm c(t, r, z) + 0 

t>O, reA,z=O f(t, r) = 
(l+ ew{fi[E(t) -E”l})c(t, r) - 1 

exp{dWW 41/A 
reA f(t, r) =O 

(11) 

(12) 

Z(r) = -ZPIAf(t, r)r dr (13) 

Applying a Hanckel transformation of order zero 1351 with respect to r and a 
Laplace transformation with respect to t to eqns. (9) and (10) yields 

sc=(s, P, z) = 
d2C’(s, p, z) 

dZ2 -P2c’(S, P, z) 

or 

d2$, p, z) 

dz2 
- (p2+s)c=(s, p, z) =o 

(14) 

(15) 

where Z(s, p, z> is the double transform of c(t, r, z), s is a Laplace variable and 
p is a Hanckel variable. Solving this linear differential equation with the boundary 
condition of eqn. (ll), we obtain (for z = 0) 

(16) 

where F(s, p) and ks, p> are double transforms of c(t, r) and f(t, r) respectively. 



Performing the inverse Laplace transformation (convolution) leads to 

qt, P) = -/ 
rew(-p2(t--7)) - 

o [r(t _ 7)]1/2 ftT, p) dT (17) 

Substituting the definition of the Hanckel transform [351 

f(p) = /oo( pu)f(u) du (18) 

where .Z,, is a Bessel function of the first kind of order zero [36], into eqn. (17), we 
have 

Now the inverse Hanckel transformation 1351 

f(r) = ~m&l(Z4f(Z9 dP 

(19) 

(20) 

yields 

f ew[ -P’( f - T)] 
df, r) = +‘-b(~‘) d~~~z'Jo(~u) “$ LP(t_7)11,2 f(~, u) d7 

dT/ (f P exp[ -P’(t - 7)]J,( P+&( PU) dp 

According to Watson [37] 

(21) 

(P exp(-~P2)JobV&P) dP = T& ew( - y)&,( E) u >o (22) 

Thus we obtain 

(23) 

where Z, is a modified Bessel function of the first kind of order zero 1381. The 
dummy variable of integration u is related to the radial distance. We introduce 
this notation to avoid confusion with r, which represents some fixed point. 
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Finally, the combination of eqns. (23) and (12) gives a two-dimensional second- 
kind integral equation: 

f(t, r) exp{afn[E(t) -E”l)/A+ 1 

1 + ew{fi[E(t) -E”l} 

It should be noted that the diffusional flux is equal to zero everywhere beyond 
the conductive surface A. Therefore the integration with respect to u in eqn. (24) 
should be performed over A, rather than from 0 to m. In the case of a disk 
electrode these limits are 0 and 1. Solving eqn. (24) with respect to f(t, r>, one can 
obtain a spatial distribution of the current on the electrode surface for any t, and 
the total dimensionless current is to be computed using eqn. (13). The dimension- 
less current is a function of two kinetic parameters A and on. 

Contemporary texts on integral equations [39,40] do not contain any information 
about solving multidimensional integral equations. Theoretical analysis and a few 
numerical examples can be found in the more advanced literature [41-431. How- 
ever, no algorithms for special cases are available. To our knowledge, no examples 
of the use of these equations in chemical, and particularly electrochemical, 
calculations have been reported. An approach to the numerical solution of 
multidimensional integral equations, as well as some computational results ob- 
tained from eqn. (24), will be discussed below. 

Among several works containing analytical or semi-analytical solutions of the 
time-dependent microdisk problem, an approach developed by Fleischmann and 
coworkers 118-201 is closest to ours. In fact, if we did not perform an inverse 
Laplace transformation in eqn. (17), we would obtain, instead of eqn. (21), an 
expression for a Laplace transform of ,?(s, r) identical to eqn. (17) in ref. [19]. 
Fleischmann and coworkers derived their equation in a more complicated way 
using Neumann’s integral theorem. These authors solved the integral equations in 
the Laplace domain and confronted the difficult problem of an approximate 
numerical inversion [20]. Also, they did not use eqn. (22) which allows one to get 
rid of a highly oscillating product of Bessel functions of the first kind. Conse- 
quently, the computer program given in ref. 20 is much more sophisticated than 
ours, and is suitable only for computing chronoamperograms of a diffusion-con- 
trolled process. 

In refs 19 and 20 the derivation of the integral equations for the electrochemical 
(EC) mechanism under steady state conditions was shown to be essentially the 
same as the case of a simple electrode process. This is true for non-steady state 
conditions as well. Expressions similar to eqn. (24) can be derived for EC and 
perhaps for some other mechanisms with first-order chemical reactions. 
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Fig. 2. A scheme of a scanning electrochemical microscope. A tip and a substrate are represented by 
arbitrarily-sized disk electrodes embedded in two parallel insulating planes. The centers of both 
electrodes are on the Z-axis. 

Scanning electrochemical microscopy 

The geometry in scanning electrochemical microscopy (SECM) [44] can be 
represented by two electrodes in close proximity (Fig. 2). One is a microdisk (tip); 
the other (substrate) may be of any size. The substrate can be taken as an infinitely 
large plane 1451 or as having dimensions of the order of the tip. 

In this case the diffusion problem 

1 =0x 
- +x aR 

O<Z<L,O<R,O<T (25) 

3% 
----CD 

ar i 

a2c, a2c, 1 ac, 
-+-_ - 

az2 aR2 +z aR 1 
T=Q, R>Q, L>Z>Q C&T, R, Z) = Coax C,( T, R, Z) = 0 (26) 
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T>O,R,>R>O,Z=O f&T, R, 0) =D 

= -D ac,(T, R, Z) 
az 1 

i,(T, R) = 
z=o ?lF 

‘[ aC,(T, R, Z) 
az I z=o 

(27) 

T>O, R,>RrO,Z=L f&T, R, L) =D 
aC,,(T, R, Z) 

az 
I Z=L 

= -D 
aC,(T, R, Z) 

I 

i,(T, R) 
=-- 

az 
Z=L 

nF 
(28) 

includes two boundary conditions (eqns. (27) and (28)) for two working electrodes. 
Both the tip current i,(T, R) and the substrate current i,(T, R) can be affected by 
electron transfer (ET) kinetic effects as represented by the Butler-Volmer equa- 
tion (eqn. (5)). However, the kinetic parameters and E(t) functions may be 
different at the two electrodes. Below, variables with subscript 1 correspond to the 
tip and those with subscript 2 correspond to the substrate. 

Using the same dimensionless variables as above (eqn. (8)) and y = L/R,, 
S = RJR,, and recalling eqn. (6) we can write 

ac a2c a2c 1 ac -= 
at az2+s+rar o<t,olr,o<z<y (29) 

t=O,Olr,O<z<y c(0, r, 2) = 0 (30) 

O<t,Olr<l, z=O fdt, 4 = 
[1+ exp{fi[Wt) -E”]}]q(t, r) - 1 

ew{alf~Pl(t) -~“]}/~l 
1 <r, fl(t, r) =0 (31) 

O<t,Olr<S, z=y f2(t, r) = - 
[l + exp{fn[E,(t) -~5”]}]c~(t~ r) - 1 

ew{~2fn[E2(t) -E”lJ/A2 
S<r, f2(t, r) =0 (32) 

I,(t) = -2rk1fl(t, r)r dr Z2(t) = 2ri6f2(t, r)r dr (33) 

Applying Laplace and Hanckel transformations to eqns. (29) and (30), as was 
done above, we again obtain eqn. (15): 

d2C’(s, p, z) 

dz2 
- (p2+s)Z(s, p, z) =o 

with two boundary conditions: 

z=. dc=h P, z) 

dz 
=Z(s, P> 

dc=h P, z) 
z=y 

dz 
=T;(s, P> 

(34) 

(35) 
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The solution of this boundary value problem is 

z(s p) = & P> -z(s, P) cosh[ y(p2 +$“] 
1 7 (p2+sy2 sinh[ y( p2 + s)l/zI 

~<s 
, 

p) = &, P) co+(p2+s)1’2] -z’<s, P) 

(p2+sy2 sinh[y(p2+s)“‘] 

In this case inverse Laplace transformation yields 1461 

<(t, P)= ~~'expI-p2(~-~Jj 

xj/;(,,Y)e~~~i~(~Tr)]-~(T,p)s,[oli~(~~~) 

~(~,~)=~/dexp[-p'(t-T)] 

.I 

(36) 

(37) 

d7 (38) 

d? (39) 

where 8, and 8, are theta functions [471. Using the definitions of the Hanckel 
transform and the inverse Hanckel transform of order zero (eqns. (18) and (20)), 
we obtain 

x f2(T u)@ 0 ( , 4[ 1 i”‘;; ‘I] -fl(T, ++I i”‘:; “1) dT (40) 

x jol exp[ -p’(f -T)] 

x f2(T u)e o 
{ , i[ j i”‘;; “1 -fi(T, .,,[ o/ i”‘:r “1) dT 

(41) 
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Using eqn. (22) gives 

c,(t, r) = &fu du/ 
texp[-(r2+u2)/4(t-T)] 

0 t-r 

ru 

xzo 2(t-7) [ 1 

x f*(T, UP4 0 1 ( 1 i”‘;; ‘)] -fl(T, u) yI[O( i”(;; “1) d7 (42) 

c,(t, r) = &L@u du/ 
texp[-(r2+U2)/4(t-7)] 

0 t-r 

Combining eqns. (421, (43), (31) and (32) results in 

fI(t9 r) exp(~&[~,(O -E”])/A, + 1 

1-t exp(fn[E,(t) -E”]) 

= $0 ,~~exp[-(r”-+u:)/4(t+l 

.,,[ 2ctr T,]( f2(T, .)e,[o/ i”‘:; ‘I] -fdT7 4%[o/ i”‘:; “1) dT 

(44) 

1 -f2(t7 r) expb2fiP2W -fWA2 

which are the desired solutions for SECM. Equations (44) and (451, like eqn. (241, 
are suitable for any values the kinetic parameters and for any functions E,(t) and 
E,(t). When the substrate is insulating, f2(t, r) = 0, and only eqn. (44) needs to be 
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solved, resulting in a simpler problem. These equations look somewhat more 
complicated than those derived for a microdisk; however, the numerical algorithm 
to solve these, which is currently under development, is essentially the same. 
Taking into account that 

and 

one can see that as y + 00, eqns. (44) and (451 describe two independent mi- 
crodisks (eqn. (24)). 

It should be noted that eqns. (44) and (45) rely on the assumption that both the 
tip and the substrate are embedded in insulating planes. This is not completely 
consistent with real SECM conditions. A way to avoid this limitation is shown 
later. 

Microband electrode 

Unlike the two previous cases, the two-dimensional diffusion problem for the 
microband requires rectangular coordinates: 

O<T, -cQ<X<CQ,O<Z (46) 

ac, 
-CD ( a2c, a2c, 

-+- 
aT ax2 az2 i 

T=O, -a~<X<m,O<z C&T, X, Z) = Co,, C,( T, X, Z) = 0 (47) 

0<T,X2+Z+m C,,(T, X, Z) + Co, C,(T, X, Z) +O (48) 
O<T, -m<X<m,Z=O 

f&T, W =D 
X,,(T, x, Z) ac,(T, x, Z) i(T, X) = 

az az 1 z=o nF 

(49) 
The dimensionless variables in this case are 

2x 22 4DT Cox X=-,Z=--,f= -,c=l-- 
W W W2 cock 

(50) 
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and the dimensionless form of the problem is 

ac a2c a2c 

at- az2 --+s O<t,--m<x<m,O<z (51) 

(52) 

(53) 

t=O, --<xXm,O<z c(t, x, 2) =o 

O<t, x’+z+m c( t, x, z) -+ 0 

O<t, XEA, z=O f(t, x) = Q + em{f$E( t) - E”l))c(t, x) - 1 

exp{afn[W) -W/A 
xEA, f(t, x) =0 (54) 

Z(t) = -IAf(t, x) dx (55) 

Applying a Fourier transformation with respect to x and a Laplace transforma- 
tion with respect to t, as was done in ref. 25 for example, we come to a differential 

Fig. 3. An assembly of inlaid planar electrodes of an arbitrary shape. 
electrode plane. 

The X and Y axes refer to the 
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equation formally identical with eqn. (15): 

d2Z(s, p, 2) 

dZ2 
- (p2+s)c=(s, p, 2) =o 

where p is now a Fourier variable. Solving this equation and applying an inverse 
Laplace transformation, as was done above, again leads to eqn. (17). Inverse 
Fourier transformation [48] applied to that equation yields 

c(t, x) = -&j: du j 
fexp[-(x-U)2/4(t-r)] 

t-r 
f(7, u) d7 

m 0 
(56) 

Combining eqns. (56) and (54) and taking into account that beyond the conductive 
surface f(t, x) = 0, one can write 

f(t, x) exp(afn[E(t) -pl)/A + 1 
1+ exp{.fn[E(t) -rl} 

1 
= -- j dUjtexp[-(x-U)2/4(t-r)]f( ) d 

2aA 0 t--7 
r,u 7 (57) 

Equation (57) is much simpler than eqn. (24) proposed for a disk. It does not 
contain any special functions; therefore the computations should be much faster. 
Indeed, eqn. (24) has a singularity of type (t - T)-~/~ which is not very easy to 
handle. The singularity of eqn. (57) is simpler. 

Our results differ from those obtained by Coen et al. [25] in two ways. These 
authors used a boundary condition 0 < t, x EA, z = 0; c(t, x> = 0 instead of a 
general Butler-Volmer equation. As a result, only a chronoamperogram under 
diffusion control can be computed from their equation. They also chose not to use 
inverse Laplace transformation and had to deal with numerical inversion in 
addition to solving a quite complicated integral equation. The computations with 
eqn. (57) should be much easier. 

Since the Fourier transformation used in this section, analogous to Hanckel 
transformation, requires only piecewise continuity of the diffusional flux as a 
function of x, we do not need to assume continuity of the conductive surface A. 
Instead, the solution (eqn. (57)) can be used to describe not only a single 
microband electrode (the limits of integration in eqn. (57) for this case are from 
- 1 to l), but also an array of the parallel microbands separated by the insulating 
gaps 1491. 

A set of arbitrarily-shaped planar electrodes embedded in an insulating plane 

This general case encompasses several well-known electrochemical systems, e.g. 
an array of microelectrodes (Fig. 3), an electrode with a partially blocked surface, 
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islands of a growing film, etc. The three-dimensional diffusion problem is similar 
to that solved in a previous section: 

a2c, a2c, 
- - 

+ aY2 + az2 

O<T, --m<X<m, -~<Y<o3,O<Z 

ac, 
-=D 

a2c, a2c, a2c, 
aT 

-+- +- 
ax2 aY2 az2 

(58) 

T=O, -m<X<m, -m<Y<co,O<Z C,( T, X, Y, Z) = Coax 
C,(T, X, Y, Z) = 0 (59) 
O<T,X2+Y2+Z+~ C&T, X, Y, Z) --) Cox ‘UT, X, Y, Z) --) 0 

(60) 
O-CT, -w<X<m, -w<Y<m, Z=O 

fo,(T, X, Y) =D (?$),=,c -D(3),-,= i(T’nXF’Y) (61) 

With new variables 
C 

+DT,c=1---511_ 
COOX 

f(f, x, Y)' 
ac(t, x, Y, z) = 

az I 
-&j-f&x27 (62) 

r=O OX 
we have 

O<t, -w<X<oo, -c=<Y<m,O<Z (63) 

t=O, -m<X<m, -m<Y<m,O<Z c( t, x, Y, Z) = 0 (64) 
O<t, X2+Y2+Z+m c(t, x, Y, Z) -+ 0 (65) 

O<t,(X,Y)EA,z=O f(t, X, Y) = 
(1 + exp{fn[ E( t) - E”]})c( t, x) - 1 

exp{a_fn[E(t) -E”ljD/k 

(X, Y) @A, f(t, x9 Y) = 0 (66) 
Applying to this problem a double Fourier transformation with respect to X 

and Y, and a Laplace transformation with respect to t, yields 

d*C’(s, p, u, z) 

dz2 
- (p2+u2+s)c=(s, p, 24, 2) =o, (67) 

where p and u are the two Fourier variables. Solution of eqn. (67) is completely 
analogous to that of eqn. (15) and leads to 

qs, p, u) = - 
As, P, u) 

(p2 + u2 + s)1’2 (68) 
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After applying inverse Fourier and Laplace transformations, we have 

‘cr 9 x, ‘) = - @/2 _ 
-2-j”, /“,cexp 

(-[(x-~)‘+(Y-~)*]/4(1-7)) 
_ 

(f - 7)3’2 

xf(~, u, w) dr du dw (69) 

Substituting the boundary condition (66) into eqn. (69) results in 

f(t, X, Y) exp{afn[E(t) -E”l)D/k,+ 1 

1 + exp(fn[ E( t) -I?]) 

1 
= 

j jj 

texp(-[(x-u)2+(y-w)2]/4(t-7)) 
-- 

4,rr3/* A 0 (t-7)3'2 

x~(T,u,w) dr dv dw (70) 

We cannot compare eqn. (70) with any results reported previously; no analytical 
or numerical solution has been reported for this general problem. The numerical 
solution of this integral equation should be more complicated than those discussed 
above. We show below that it would lead to significant advantages compared with 
other known approaches. 

Electrodes surrounded by an insulator of finite width 

The finite size of the insulating sheath enclosing a microelectrode results in 
additional complexity. Shoup and Szabo [SO] suggested an approximate numerical 
solution for a microdisk. To our knowledge, no analytical approaches to solving 
this problem have been reported. At the same time, neglecting the diffusional flux 
from the back side of the electrode may lead to errors [50]. For example, this 
contribution may be substantial in SECM, especially with an insulating substrate. 
We consider here only the case of a microdisk; however, the simple analysis shows 
the applicability of this approach in describing other planar electrodes, e.g. a 
microband or an SECM tip. 

The plane containing the electrode surface divides the whole space into two 
half-spaces: the first one (the “front half-space” (Fig. 4(a)) is the usual diffusion 
space of the inlaid electrode; the second one (the “back half-space” (Fig. 4(b)) is a 
source of additional diffusional flux connected with the finite radius of an insula- 
tor. We can consider the plane z = 0 as an imaginary border between these 
half-spaces. We can now formulate the boundary problem for a microdisk exactly 
as above: 

ac a*c a*c 1 ac 
-= 
at a22+ar2+rar 

O<t,OIr,O<z (71) 

t=O, r>O, z>O c(t, r, 2) =0 (72) 
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conduciive insul\ator insulating back side 
disc of the electrode 

Fig. 4. A microdisk electrode embedded in an insulating ring. The “front half-space” (a) and the “back 
half-space” (b) are separated by the plane .r = 0. For simplicity the thickness of a conductor connected 
with an electrode from the back side and the thickness of the disk are neglected. Thin circles represent 
the lines of the uniform concentration of electroactive species corresponding to cylindrical symmetry. 
From the back side the whole area of the disk and the surrounding insulator look like a homogeneous 
insulator. The plane z1 = 0 (b) is identical with the plane z = 0 (a). 

t>O,r+z+w c(t, r, 2) +o (73) 

t>o,o<r<1, z=o f(t, r) = 
(1+ exp{fi[E(t) -E”]})c(t, r> - 1 

exp{afn[E(t) -E”l}/h 

1 <~a, f(t, r) =o act-, f(t, r) = -g(t, f-1 (74) 
The only difference between formulations (9)-(12) and (71)-(74) is contained in 
eqn. (74), where beyond the conductive surface the diffusional flux is equal not to 
zero, but to the flux from the “back half-space” g(t, r). Solving problem (71)-(74) 
exactly as above, we obtain the same eqns. (23) and (24). However, in this case the 
integration should be performed over the whole r-axis, from 0 to ~0, and the values 
of f<t, r) for r > a are unknown. 

Let us consider the diffusion problem for the “back half-space” which preserves 
cylindrical symmetry: 

ac a*c a*c i ac 

at- a2f --+$T+;z O<t,Osr,O<z, (75) 

t = 0, r 2 0, z1 > 0 c(t, r, 2,) =0 (76) 

t>O,r+z,-+m c( t, r, zl) -+ 0 (77) 

t>O,Osr<a, z,=O g(t, r) =0 a <r, g(t, r) = -f(t, r) (78) 

Reproducing the sequence of steps (14)-(22), one arrives at an expression 
virtually identical with eqn. (23): 
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For r > a, CO, r) in eqn. (79) is the same value as that in eqn. (23) because the 
planes z = 0 and z1 = 0 are identical. Combining eqns. (23), (79) and (78), we have 

or 

cdu/:exp'-( (t__)3/2 

r* + u*)/4( t - r)] I 
O[qt:T)]f(T'U)dT 

= -2jmu du j 
texp[-(r2+u2)/4(t--)] I ru f(7, u) d7 (81) a 0 (t - T)3'2 O 2(t-7) [ 1 

The combination of eqns. (24) and (81) represents a solution of the problem 
under consideration. We do not expect any significant additional computational 
efforts in solving this problem compared with the single eqn. (24). 

RESULTS AND DISCUSSION 

Numerical solution of multidimensional integral equations 

We present here only some basic ideas about the numerical solution of eqn. 
(24). Since this problem is new, various algorithms can be proposed, and many 
practical details will be discussed in a separate paper. The numerical solution of 
eqn. (24) requires one to build a temporal grid for the function f(t, r) and to 
choose the sequence of r-points within the interval (0, 1). The temporal grid 
should be non-uniform, because this kinetic equation is stiff, like those solved 
previously [30-331. The authors of most studies (excluding ref. 24) suggest using a 
different size for the distance between points on a disk surface with smaller steps 
near the border. Our computations did not show a dramatic difference in the 
results obtained with a uniform and a non-uniform distribution of r-points. 
However, a non-uniform distribution appeared to be somewhat more efficient 
(assuming the same number of points). An example of an appropriate space grid is 
given in the next section. 

The integral equation to be solved is of a “mixed” type; the inner integral looks 
like a convolution integral of the Volterra type and the outer integral is of the 
Fredholm type [39,40]. The method of solution we have chosen is usual for 
Volterra equations. For each new point t, of the temporal grid the value of the 
double integral is calculated anew, and the value of f(tk) is found by solving an 
algebraic equation. However, unlike one-dimensional Volterra equations [2-4,30- 
33], we now have to solve not a single algebraic equation, but a system of m linear 
equations at each step of integration to find m values of f(t,, ri) for all r-points. 
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There are two different approaches to digitizing eqn. (24): interpolating f(t, r) 
[17-20,25,29] or using some simple quadrature rule (e.g. trapezoid or mid-point 
rules) [2-4,30-331. Since two-dimensional interpolation is not very easy, we shall 
discuss here only the second approach. An obvious expression for the inner 
integral in eqn. (24) at the kth step of the integration process is 

,tmh r2 + u2)/4(t, - r)] 

0 (t, - T)3’2 
b( 2(tk:r))f(T? u) d7 

= 
/ 

tk_,exp[-(r2+u2)/4(t,-7)] 

0 (tk-T)3’2 
f(7, u) dT 

+ f* / 
exp[-(r2+u2)/4(t*-T)]z ru 

fk-l (t, - T)3’2 O 2(t,-7) [ 1 f(T, u) d7 (82) 

It should be noted that only the last term in eqn. (82) contains the unknown 
value f(tk, u) as well as a singularity at T = t,. The trapezoid rule for the first 
integral in the right-hand part of eqn. (82) is 

/ 
tt_l w[ -_(r2 + U2)/4(tk - t)] 

0 (t, - t)3’2 
zo( 2(rk:T))f(T u) dT 

=ki1exp[-(r2+u2)/4(t*--ti)] 

i=l (t, - t;)3’2 
‘O( qt,n’_ 4))ft’iT ‘IAti (83) 

where Ati = (ti+l - 
tk-2)/2. 

ti_l)/2 for 1 <i <k- 1, At, = t2/2 and At,_, =(t,_, - 

We cannot use the trapezoid rule for the last integral in eqn. (82) because it 
contains a singularity. It should be expressed as 

exp[-(r2+u2)/4(tk-T)] z _ TU 

(tk-T)3’2 O 2(t,-7) [ I f(T, u)d~ 
= f(kly 4 +fh 4 

2 / 
tk expI--(r2+u”)/4(tk--)I z m 

(t, - 7)3’2 O 2(tk -T) [ 1 dT I fk-, (84) 
Combining eqns. (82)-(841, we have 

/‘k exp[ - ( r2+u2)/4(tk-T)] z rzd 

0 (tk-T)3’2 O 2(t,-7) [ I f(T, u) dT 

+ f(lk-17 u) -tf(lkY u) tk f7.4 
2 / 

exp[-(r2+u2)/4(rk-7)] z 
O 

d7 

(k-1 (tk - T)3’2 
[ I 2(tk - T) (854 
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exp[-(r2+U2)/4(tk-T)lI m 

O 2(t,-7) [ 1 d7 

where F(r, u, tk_r) involves terms in t,_, in eqn. (85a), i.e. a combination of 
terms on the right-hand side of eqn. (85a). 

Now one can use eqn. (85) to obtain an expression for the double integral. For 
the outer integral we suggest use of a slightly modified mid-point rule instead of 
the trapezoid rule because our computations have shown a very poor performance 
of the last quadrature with a non-uniform spatial grid, which seems to be 
connected with some symmetry problems. The following quadrature showed much 
better results: 

jDl” d”~kexp’-‘ctk _ T)3,2 

r2 + u2)/4( t - r)] I 
0[ qt” T) ]fb ‘) dT 

1 
u F(f-, u, t,-1) + 

fttk, ‘1 
= 

ji 0 2 / 

It exp[-(r2+u2)/4(t,-7)] 

tk-l (tk - 7)3'2 

XIo[ 2(1”r)] dr) d” 

ru 
XI0 

[ 1 2(tk - 7) 
dr 

=j~l( UjF(r, Uj, t,_,)*Uj + r(r’~ “’ ~~I,U dull’ U 

Ik-I 

x exp[-(r2+u2)/4(tk-T)] 

(t, - T)3’2 z”(2(tk’T)) ‘7j 
(86) 

where each point uj (excluding two points u, and u,) is located in the middle of 

q-a, ‘2 ‘3 ‘4 ‘5 c ‘7 ‘9 5 ~Olil’% 

,a,l,F, >,?3 ,“;s,+ (f,f,“4PO 
0054 0.146 0290 0403 0.557 0 666 0.801 0.979 0.97099 

0 0.100 

r 

0.218 0.3.7 o.,*o 0.91, 0.7330.9400.910.991.0 

Fig. 5. Non-uniform spatial grid over the disk surface. Bold type and high bars correspond to the points 
ri in which the local flux is to be computed. Light face type and low bars indicate the boundaries ai of 
integration subintervals. It should be noted that r1 - ui = ai+, - r, for all points excluding the first and 
the last. 
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the interval (aj_r, aj) (Fig. 5) and Auj = aj - aj_r. Substitution of eqn. (86) into 
eqn. (24) leads to a system of m linear equations for a given time t,: 

4tk)f(tk7 rr) + i ,Ef(t,, rj)/‘J u duJ’” u 

exp[ - (rf + u*)/4( tk - r)] 

J=l aj-l fk-l (I, - 7)3’2 

XI0 d7 

= RH( tk) - gUjF(r,, uj, t,_,)Auj 
j=l 

(87) 

d(tk)f(tk, r,) + 5 ,gf(t,, rj)/ u du,V’ u 
exp[ - (rf + u2)/4( t, - T)] 

J-1 Oj-I lk-1 (tk-T)3’2 

Xl0 dr 

= RH(t,) - EUjF(r,, uj> t,-r)Auj 
j=l 

where 

26 exp{afi[ E(tk) -E”]) 

d(tk) = A(1 + exp{fi[ E( tk) -E”]}) 

2G 

RH(tk) = - 1 + exp[fn[ E( tk) -E”]} 

This system can be written in matrix form as 

Af=b 

where the components of the vectors f and b are fj = f(tk, rj) and 

bi = RH(t,) - EujF(ri, uj, t,_,)Auj 

(88) 

j=l 

The elements of the matrix A are 

aijli+j= i[:y du[lI, 
exp[ -(rZ + u2)/4(tk - T)] 

dr 
, (t, - T)3’2 

and 

Uii =d(t,) + ~/oi U dull* U 
ew[-(rf+U2)/4(tk-T)] 

a,-1 tk-l (t, - T)3’2 I’( z(t;‘T)) dT 
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Solving system (88) one can obtain m values of the flux f(tk, rj> and compute the 
total current according to eqn. (13). 

The most serious problem in solving eqn. (24) is handling the integrand 
singularity. There are two different cases: i +j and i = j. In the first case the 
singularity is removable; if the point ri does not belong to the interval (a,_,, aj), 
for any u E (aj_r, aj), 

lim u exp[ - (? + u*)/4( tk - T)] 

T-+fk (t, - 7)3’2 4 2(r:‘UT)) =O* 

Therefore the one-dimensional integral (85) is convergent, and the matrix elements 
can be computed: 

a;jli+j= 

rj(aj-aj-l) tp 

I 
exp[ - (r,’ + r,Z)/4( t, - r)] 

2 tk - I (t, - 7)3’2 
Io( 2ct;r,Tj) d7 (89) 

If i = j, the integrand at the point u = ri is 

exp[ -$/2( t, - T)] I r,’ 
‘i 

(tk-T)3’2 I3 i 1 2(fk -7) 

Since exp( -x)Zo,(x) = x- ‘I2 for x -+ 03 [51], the integrand has a singularity of the 
type (tk - 7)-’ for T+ t,, and the integral (85) does not converge. However, an 
analysis has shown that the double integral (86) still exists and can be computed 
directly using an adaptive quadrature. Computing double integrals for m values of 
ri and for each time is the longest part of the computations. Since the values of 
integrals are independent of kinetic parameters and of E(t), we suggest that they 
are computed once (when temporal and spatial grids are established) and then 
stored in a special file for further use. 

The computations have shown a surprising peculiarity of multidimensional 
integral equations-the best stability and accuracy of the solution is achieved by 
choosing an extremely small initial time step and a very large coefficient of 
temporal grid expansion. For example, the transients shown in Fig. 6 were 
computed with the following temporal grid: 

t, = 0, h, = 1O-23 for i = 1, . . . t;,, = ti + h, hi,1 = hi x TEXP, (90) 

where TEXP, = TEXPi_ 1 - 0.7 + 0.0175G - 2) is a changeable expansion coeffi- 
cient, and TEXP, = 15.093. The transients computed using this temporal grid have 
only 17 t-points over the dimensionless time interval (10w4, 100). Notice that 17 
points is enough to compute a quite accurate transient for the whole time range. 
Certainly, a user can choose a less rapidly expanding grid. For example, the cyclic 
voltammograms (CVs) discussed below were computed using a smaller TEXP, = 
3.95. A rapidly expanding temporal grid is probably suitable for any type of stiff 
kinetic equation. We used it for solving the one-dimensional Volterra equations 
reported previously [30-331 and obtained very accurate solutions and a significant 
gain in CPU time. 
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Fig. 6. Dimensionless quasi-reversible transients at a microdisk electrode computed from eqn. (24) with 
A = 10, n = 1 and (Y = 0.5: curves 1, E = -0.2 V, curves 2, E = 0 V. (a) Long-time region; open circles 
are calculated from the Shoup-Szabo equation [13]. (b) Short-time region; closed circles are computed 
from the quasi-reversible chronoamperogram equation [52]. 

Comments on programming and computations 

FORTRAN-~ programs implementing the given algorithm include four standard 
subroutines from the IMSL Program Library [53,54]: subroutine LSARG solves the 
linear system (88); QDAG and TWODQ evaluate the values of integrals (85) and 
double integrals (86) respectively using a globally adaptive scheme based on 
Gauss-Kronrod rules; BSIOE computes the exponentially scaled Bessel function 
exd -x)Z&). 

The programs were executed on a CRAY Y-MP/864 supercomputer. This was 
used because of (i) the absence of any preliminary information about the algorithm 
resource requirements, (ii) the availability of numerous program libraries and (iii> 
our intention to solve more complicated problems in the future (see the Theory 
section). Actually, computation of any transient presented below required less than 
3 s of CPU time (using an established r- and t-grid). Since this algorithm performs 
numerous evaluations of special functions, it is not vectorizable. In this case, the 
CRAY was only about two orders faster than a PC-level computer. Thus these 
computations should require only a few minutes of microcomputer CPU time. 

Potentiostatic transients at a microdisk 
We could not find any published results for chronoamperograms at a disk 

electrode under mixed diffusion-kinetic control. These curves are much harder to 
compute than the well-known diffusion-controlled transients with constant surface 
concentration [9-14,17-20,23,24], because of the stiffness of the kinetic equations. 
Therefore, we compared our quasi-reversible chronoamperograms (Fig. 6) with 
those calculated using the Shoup-Szabo equation [13], which has been claimed to 
be accurate to 0.6%. As expected, both curves at high negative potentials (curves 
1) are coincident over the long-time region. Deviations should be observed at short 
times when the process is kinetically controlled. At E = E”, a quasi-reversible 
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Fig. 7. Quasi-reversible CVs at a microdisk electrode computed from eqn. (24): A = 5, n = 1, (Y = 0.5. (a) 
Near-steady-state CV, u = 10 mV s-l; open circles are obtained from ref. 23. (b) Non-steady-state CVs, 
u = 20 V s-l; open circles are obtained from [23], and closed circles are computed for a hemispherical 
electrode with the same radius (5 pm) and the same values of parameters using the techniques of refs. 
30-33. 

steady-state current is somewhat lower than the reversible current (curves 2) in 
agreement with ref. 12. 

There is another approach to checking the short-time part of the kinetic 
transient. When I(t) ZB I,, the influence of the edge effect is negligible and the 
current corresponds to the well-known equations derived for planar diffusion. 
Therefore the transient (non-steady-state) behavior of this electrode can be de- 
scribed exactly using the equation of a quasi-reversible chronoamperogram [52]. 
The transients calculated from that equation and converted to dimensionless form 
are in good agreement with our data (Fig. 6(b)). At longer times, the influence of 
the steady-state current becomes substantial and deviations arise. 

Cyclic voltammograms 

There is quite a good coincidence between the steady-state CVs at a microdisk 
electrode computed by different authors. Our quasi-reversible CV approaching 
steady-state behavior (Fig. 7(a)) is in agreement with the results of Taylor et al. [231 
which have been verified by comparison with the analytical approximation of ref. 
12. At the same time, no reliable data have been computed so far for quasi-reversi- 
ble non-steady-state CVs. References 15, 16, 23 and 5.5 do not contain quantitative 
comparisons with the results of other authors. Michael et al. [551 claimed only 
qualitative agreement of their simulated CV with that of Heinze and Storzbach 
[16]. A simple analysis shows rather large differences between the curves given in 
ref. 23 and and those in refs. 15, 16 and 55. A comparison of our quasi-reversible 
non-steady-state CV (Fig. 7(b)) with that of Taylor et al. [231 shows substantial 
discrepancies, the most important or which is in values of peak potentials. Thus, 
for (Y = 0.5, A = 5, and u = 20 V s-l, our results show AE, = 130 mV compared 
with AE, = 400 mV in ref. 23. We can analyze these differences. First, since this is 
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a non-steady-state voltammogram, it should be similar to that for a large planar 
electrode. The AE, value for the same kinetic parameters in ref. 56 is about 100 
mV. Second, we computed the CV at a hemispherical electrode (which should be 
much like a microdisk CV> with the same kinetic parameters (Fig. 7(b)) using the 
technique of refs. 30-33; AE, = 135 mV was found. From ref. 15 one can obtain 
for the same case A E, = 135 mV. AE, in the range 100-200 mV is obtained from 
the equations in refs. 16 and 55. All these values are compatible with our 
calculations, but not with those based on ref. 23. 

Integral equations versus numerical simulations 

Digital simulations based on finite difference and finite element methods have 
been widely used in the modeling of electrochemical systems because they can be 
readily applied without a mathematically sophisticated background and allow 
straightforward and minor modifications to incorporate chemical reactions coupled 
to the heterogeneous electron transfer reaction. They become less efficient and 
more difficult to apply to problems involving multidimensional electrode geome- 
tries, such as those considered here, or to those involving very different spatial 
scales, e.g. when the coupling of double-layer charging or semiconductor space 
charge effects to diffusion in solution is treated. 

An important advantage of the technique described here is a drastic reduction 
of the requirement in computer resources. For instance, numerical simulation of a 
microdisk requires at least 100 X 100 = lo4 (r, z> points [23,24]. With 1000 time 
iterations as used in ref. 23 for either transient or CV simulation, the time-space 
grid has as many as 10’ nodes. In contrast, reducing the problem to the integral 
equation leads to the decrease of its dimension by one. Additionally, in solving 
integral equations one can use only a few r-points over the electrode surface 
without losing accuracy. For instance, in refs. 19 and 20 the use of no more than 10 
r-points over the disk surface was recommended. Analogously, we have found that 
a space grid with 11 r-points (Fig. 5) is quite enough to compute accurate 
polarization curves for a microdisk. Moreover, no r-nodes are necessary beyond 
the conductive surface. This circumstance is particularly important in the case of 
electrode arrays, partially blocked electrodes, and other electrochemical systems in 
which the active electrodes are widely spaced by insulating areas. These would 
require large amounts of computation time using any type of digital simulation, 
because the whole surface must be covered with a spatial grid, and an expanding 
grid is difficult to devise for the general case (see Theory section). 

As discussed above, the integral equation approach allows the use of a rapidly 
expanding initial part of the temporal grid and only a few spatial points; conse- 
quently, there are only about 1000 elements in our largest array of f(t, r). 
Although at this stage we were more concerned with the accuracy and stability of 
our program than in optimization, it appeared to be about two orders faster than 
an efficient Krylov integrator [57,58]. Finally, the technique described seems to be 
a good method for modeling electrochemical systems which involve complex 
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geometry, while digital simulation is the only feasible way to treat processes with 
coupled chemical stages of higher orders. 

CONCLUSIONS 

Multidimensional integral equations are suitable for modeling complicated 
electrochemical systems. Although no standard software is presently available for 
solving the types of equations, simple and efficient algorithms can be created. 
Solving the integral equations was about as efficient as numerical simulations for 
one-dimensional problems [30-331. It was significantly more efficient for relatively 
simple two-dimensional systems like a microdisk and should be much better for 
modeling more complicated objects. Many physical problems relying on partial 
differential equations can be transformed to multidimensional integral equations. 
Numerical solution of such equations can be used, for example, in heat transfer 
calculations (which are very much like diffusion problems) as well as in other 
physical applications. 
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Nomenclature 

A electrode surface area (conductive surface) 
C(T, X, Y, Z), C(T, R, Z) concentrations of the electroactive species as func- 

tions of spatial variables and time; the subscripts Ox 
and R relate to the oxidized and reduced forms 
respectively 

&, x, Y, z), c0, r, 2) the same variables in dimensionless form 
C(T, R) surface concentrations of the electroactive species 
c(t, rl the same variables in dimensionless form 
C” bulk concentration 
D diffusion coefficient 
E(T), E(t) instantaneous value of the electrode potential 

&, X, Yl, fV, R) 
standard (formal) potential 
diffusion flux towards the electrode surface 

? r, 

the same variables in dimensionless form 
= F/RT 

Z(T), Z(t) faradaic current and the same variable in dimension- 
less form 

Z ss 4nFC”DR,, microdisk steady-state current 
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n 

Y 

6 

local faradaic current density 
standard rate constant for heterogeneous ET reaction 
microband width 
distance between tip and substrate electrodes in 
SECM 
number of electrons involved in electrode reaction 
radius of a disk electrode 
tip and substrate radii respectively 
scan rate 
transfer coefficient 
ratio of the radius of the insulating ring surrounding 
a microdisk to the disk radius 
dimensionless kinetic parameters given by wk,/2D, 
R,k:/D and R,,kf/D respectively; subscript 1 re- 
lates to the tip and subscript 2 to the substrate 
electrode 
= L/R,, dimensionless distance between two elec- 
trodes in SECM 
ratio of the substrate radius to the tip radius 
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