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Abstract 

The new approach to solving diffusion problems using multidimensional integral equations (equa- 
tions containing multiple integrals) proposed in Part 1 is used to address microelectrode problems with 
two types of electrode geometry: two-dimensional linear diffusion and cylindrical diffusion in a 
thin-layer cell. The electrochemical current transients and cyclic voltanunograms at a microband 
electrode as well as the response of a pair of parallel microbands working in the generator-collector 
mode are obtained. The current found with a scanning electrochemical microscope with either a 
conductive or an insulating substrate is also calculated using this approach. In both cases the 
current-potential curves can be computed for a simple electrode reaction with any value of heteroge- 
neous rate constant and any shape of excitation signal. The theory for an electrode process with a 
successive first-order homogeneous chemical stage is also discussed. 

INTRODUCTION 

In Part 1 [l] we showed that many types of problems involving microelectrodes 
with non-uniformly accessible surfaces can be solved by use of multidimensional 
integral equations. The advantages of this approach are as follows: (1) high 
computational speed, especially in the case of electrode arrays and other systems 
with complicated geometry; (2) flexibility, allowing one to incorporate diverse 
excitation signals and different values of kinetic parameters without any significant 
changes in the program; (31 relative simplicity of the algorithms; (4) uniform 
description of various types of microelectrodes. In Part 1 [ll the numerical 
treatment of a microdisk was shown. We now consider two other, substantially 
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different, cases: microband electrodes (or paired parallel bands) and the scanning 
electrochemical microscope (SECM). 

Microband electrodes, which have extremely small widths, have been the subject 
of many experimental studies [2-61. However, the theoretical description of such 
electrodes is less well developed. Unlike a microdisk, no true steady state can be 
achieved with a microband electrode. Therefore no theoretical expression for the 
steady-state current (such as those for the microdisk or the microsphere) is 
available. Non-steady-state calculations appear to be complicated. Even in the 
simplest case of chronoamperometry at a microband with a pure diffusion control, 
no single analytical approximation for the whole time domain has been obtained so 
far. Aoki et al. [7], using extremely heavy mathematics, derived an integral 
expression describing the long-time region. They also obtained two rather compli- 
cated analytical approximations for short and long times which cannot be com- 
bined into a single smooth curve. Two other approximations proposed by Szabo et 
al. [8] appear simpler; however, their long-time approximation is the result of an 
arbitrary fit and is not physically intuitive. The exact results for diffusion-con- 
trolled chronoamperometry at a microband were obtained by solution of an 
integral equation in Laplace transform space with successive numerical inversion 
[91. 

Deakin et al. [lo] performed a digital simulation of quasi-reversible cyclic 
voltammograms at a microband electrode, and reported a good fit to the experi- 
mental curves for ferrocene oxidation. With this general formulation of the 
diffusion problem, this approach should be useful in the computation of voltammo- 
grams for electrode processes of any degree of reversibility, as well as for 
chronoamperograms etc. Surprisingly, Deakin et al. presented results only for 
totally reversible reactions with the whole set of kinetic and experimental parame- 
ters allowing quantitative comparison. The main conclusion of ref. 10, as well as in 
its continuation [ll], is the existence of the analogy between a band and a 
hemicylindrical electrode. However, this analogy is less useful for quantitative 
interpretations because the equivalency is not straightforward, and the solutions 
for a cylindrical electrode itself are not very simple. 

The microband theory we present below can easily be extended to an array of 
parallel bands, particularly to the double-band electrode. This type of microelec- 
trode array has been used in homogeneous kinetic studies [12,13] as well as in flow 
injection analysis and liquid chromatography [14] and for the determination of 
diffusion coefficients [15]. Substantial computer power was required for the time- 
independent simulation of this problem 112,131. 

Simulation of the SECM is quite challenging. Several different techniques have 
been employed for this system. Kwak and Bard [16] used a finite-element method 
with an exponentially expanding grid to simulate the steady-state current with both 
conductive and insulating substrates. A Krylov algorithm was applied to compute 
diffusion-controlled transients [17]. Recently the theory of SECM in both the 
steady-state and chronoamperometric feedback modes was developed for the E,Ci 
mechanism using the AD1 finite-difference method [18]. We report here a semi- 
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analytical solution of the problem taking into account quasi-reversible charge 
transfer, finite size of the substrate and variable potentials of both tip and 
substrate. 

In the next section we deal with details of the mathematical treatment and the 
approach used in obtaining numerical results. The results of the computations for 
microbands and the SECM are contained in the third section, which may be 
consulted directly by readers less interested in the mathematical details. 

THEORY AND ALGORITHMS 

Microband electrode 

We have recently shown [ll that the two-dimensional integral equation 

f(t, x) ew(~fi[E(t) -E"ll/A+ 1 

1+ exp(fi[E(t) -E”l) 

= 

- &jAdUl tem[ -(x-u)2/4(t-7)] f( 

7,u 7 
) d  

0 t-r 
(1) 

describes the electrochemical behavior of an inlaid microband electrode (or an 
array of parallel microbands) for the case of equal diffusion coefficients. The total 
dimensionless faradaic current is calculated according to 

Z(t) = -Lf(t, x) dx (2) 

where the local dimensionless flux is f(t, xl = -(w/2Dc”)f(T, X) and the total 
dimensionless faradaic current is Z(t) = Z(T)/nFc”DL; for other dimensionless 
variables, see ref. 1. In the case of a single microband (Fig. l(a)), the conductive 
surface area A is represented by the interval (- 1, 1). A set of such intervals 
corresponds to an array of bands (Fig. l(b)). 

Equation (1) can be solved with the same algorithm as that proposed for a 
microdisk in ref. 1. The only difference is that the kernel in integral (1) is much 
simpler. As described in ref. 1, one can obtain from eqn. (1) for each time t, a 
system of m linear equations 

Af=b 

where the components of the vectors f and b are 

(3) 

f, =f(tJc, Xl> (4) 
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Fig. 1. Scheme of (a) an inlaid band electrode, (b) a double-band electrode and (c) a non-uniform 
spatial grid over the band surface. The points x, at which the local flux is to be computed are indicated. 
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AS in ref. 1, At, = (ti+l - ti_l)/2 for 1 <i <k - 1, At, = t2/2, and At,_, = (t,_, 
- tk_*)/2; each point xi (excluding the two points x1 and x,,,) is located in the 
middle of the interval (u~_~, aj), and Axj = aj - aj_l. The elements of the matrix 
A are 

alj 1 l+j = t[l,““/I:+, 

exp[-(x,-U)*/4(tk-7)] d7 

t, - 7 

eW[ - (Xl -Xj)*/4(tk - T)] d7 
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and 

25~ ew(afi[ E( b) -E”]} 

“‘= A(1 + exp{fi[ E( tk) -I?‘]}) 

ew[ -(XI - 42/4(tk -T)] d7 

t, - 7 

It should be noted that aU = ai,. 
By solving the system of eqn. (3) for each step of integration, one can calculate 

m values of the diffusion flux f(tk, rj) and compute the total current according to 
eqn. (2). Unlike the similar equations derived in ref. 1 for a microdisk, analytical 
expressions are available for the integrals (6)-(8X Using these expressions one can 
remove all integration subroutines and significantly simplify the computer program 
used to obtain numerical results. However, this modification does not result in any 
gain in CPU time, and therefore it will be not considered further in this paper. 

The procedure for solving eqn. (1) for two (or more) microbands is essentially 
the same. The only difference is the necessity of substituting in eqns. (5) and (8) 
different values of the parameters (E, A etc.) corresponding to different bands. 
The computations have shown that a 42-point space grid (equivalent to the 
21-point grid used for single-band modeling) produces instabilities. This is consis- 
tent with the appearance of instabilities as a result of increasing the number of 
spatial points, as reported in ref. 19 where one-dimensional integral equations 
were used for modeling a microdisk. An 11-point grid (over each band surface) 
(Fig. l(c)) appeared to be much more stable. This grid is generated by the 
following formulae: x1 = - 1; i = 1, 10, xi+1 =xi + (1/75X-7 + lli - i2); a, = 
- 1, aI1 = 1, u,+~ + ui = 2xi for all other i. This grid is also recommended for 
single-band computations. 

Scanning electrochemical microscopy 

SECM [20] involves a microelectrode (tip), usually a disk embedded in an 
insulating sheath, in close proximity to a substrate. The effect of the substrate, 
either an insulator or a conductor, on the tip current can be used in the 
characterization or imaging of the substrates, in their modification [21], and for 
studying kinetics of heterogeneous reactions on the substrate or homogeneous 
reactions that take place in the gap between tip and substrate [l&22]. These 
different applications require substantially different mathematical descriptions. 
The process of imaging is usually performed under quasi-steady-state conditions. A 
theory for the steady-state current [16] is much simpler than the non-steady-state 
mathematics required for transient and kinetic experiments. The model used in the 
present work describes an SECM experiment under the conditions of a small 
substrate and an inlaid tip. With a small substrate, one can use all the advantages 
of microelectrodes (in particular, both electrodes can work in a steady-state 
regime) as well as significantly improve the accuracy of measuring the relatively 
small current owing to the flw from the tip. The estimation of the effect of 
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substrate size is also useful in imaging considerations for highly irregular surfaces 
composed of different materials 1231. The assumption of an inlaid tip simplifies the 
theory significantly and allows one to remove some of the geometrical uncertain- 
ties (see the next section). 

The solution of the SECM diffusion problem obtained in ref. 1 is as follows (the 
change of sign in the expression for f, should be noted): 

ftO, 6 exp{4+W -EDI}/ + 1 
1+ ew{.ft~[GW -E”l} 

where 

f,(t, r) = [ ac(ti:7 “],_, 

f,(t, r) - [ acy9 “],., 

It(t) = - tilft(t, r)r dr = zt(T) 
4n,Fc”DR, 

&(t) - tihfs(t, r)r dr= I,(T) 
4n,Fc”DR, 

[ol i”‘;; “I) dT 

(10) 

and H = ma&z, 1). The numerical solution of eqns. (9) and (10) is essentially 
analogous to that described above for a microband or for a microdisk [l]. The 
algorithm becomes simpler with an assumption of equal tip and substrate radii 
(h = 0, which allows one to use the same spatial grid for both electrodes. As 
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described in ref. 1, each integration step requires solution of the system of linear 
equations (3). Let m = 2ml be the total number of r-points over the tip and 
substrate surfaces. In all computations described here ml = 6. Then the following 
equations determine the elements of the matrix A and the components of the 
vectors f and b at t = I,: 

alj I l#j,ll-jl #ml 

rjArj tk 
=- 

2Y / 

exp[ -(r,Z+rf)/4(1 -T)] 

tk-l f--7 

lo[ 2t;$]Bi[u~ ‘“‘;; “1 dr 

ifIrmlandj~mlorml~Iandml~j,i=3;elsei=4;Arj=aj-aj_~ (11) 

exp[-(r:+u*)/4(r-T)] 

t--7 

if llml, i=t; if ml <I, i=s (12) 

f*=fiCtk, r,); ifllml, i=t; if ml <l, i=s 

2 m 

bl= - l+exp(fin[Ei(t) -E”]} -jF,F(r” ‘j7 fk-1)’ 

ifIIml,i=t;ifml<1,i=s 

rjArjk<leKp[-(rf+rf)/4(fk-t,)] 
F(r,, rj, tk-I) = - 

2Y n=l tk - ‘n 

(13) 

(14) 

(15) 

Z#j,IZ-jl#ml;ifI<mland j~mlorml~fandml~j,i=3;elsei=4 

(16) 
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_ rjArj ‘il exp[ -f/2( tk - tn,] 
2Y n=l 

tk  _  t, 

if Z=j, i = 3; if IL-j1 =ml, i=4 (17) 

Taking into account the equality of the integrals in arj and ajr, one can reduce the 
amount of computation. The B functions in eqns. (l&(17) can be computed 
according to 1241 

(18) 

(19) 

The number of terms in the series satisfies the inequality (n*r*/t) < 20 for the 
largest )2 value. 

In the case of an infinite insulating substrate (f&t, r> = 0) one need only solve 
eqn. (9) without the term containing f,. In this case the algorithm is identical to 
that described in ref. 1 (eqns. 82-89) with the additional multiplier 8,[0 ( i&t - 
d/r*]. 

In this section we have presented only basic ideas for solving eqns. (11, (9) and 
(10). A number of practical details allowing one to save computer time and to 
improve the stability of the solution will be discussed elsewhere. Standard subrou- 
tines used to solve the linear system (eqn. (311, to evaluate the values of the single 
and double integrals and to compute the Bessel function I&> have been listed 
previously [ 11. 

RESULTS AND DISCUSSION 

Single-microband electrodes 

The computation of the Z-E curves for a microband electrode was essentially 
the same as that described previously [l] for a disk electrode, and the microdisk 
program was easily changed for the present computations. This illustrates the 
flexibility of this approach. The microband computations were even faster than 
those performed in ref. 1; computation of each Z-t transient (Fig. 2) required 
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Fig. 2. Dimensionless chronoamperometric current at a microband electrode as a function of (a) t and 
(b) t-l/‘; (cl long-time part of the transients. E = E”; A = w/c, /2D; t = 4DT/d; Z(t) = 
Z(T)/nFc"DL. Curve 1, A = 0.05; curve 2, A = 0.25; curve 3, A = 0.5; curve 4, A = 2.5; curve 5, A = 5.0; 
curve 6, A = 50. 

about 1 s of the CRAY Y-MP8/864 CPU time (with an established r- and t- grid). 
Computing a CV with more than 100 time points required about 5 s using a 
21-point space grid constructed by means of the symmetrical continuation of the 
grid shown in Fig. 5 of ref. 1 on the interval (- 1, 0). With the 11-point grid 
described above, the computations were twice as fast without any loss in accuracy. 

There was very good agreement between our results and those of Coen et al. [9] 
for an Z-t transient for an essentially diffusion-controlled process (Fig. 3). The 
minor discrepancies that arise in the short-time region are owing to the kinetic 
limitations. When the applied potential is not far from E,,*, one can see the 
influence of the charge transfer rate on the shape of the chronoamperograms (Fig. 
2). These dimensionless curves computed for a potential E = E” are functions of 
the kinetic parameter A. A = 50 (curve 6) corresponds to the process which is 
almost Nernstian in the chosen time region. A I 0.05 (curve 1) corresponds to a 
totally irreversible process. The transients shown in Fig. 2 allow one to estimate 
the magnitude of the heterogeneous rate constant k,. This may be quite useful for 
large k, with very small band electrodes [2,31. For example, with a microband of 
width 50 nm one can easily distinguish curves 3, 4 and 5 (Fig. 2(c)) corresponding 
to values of k, of 2 cm/s, 10 cm/s and 20 cm/s respectively. 

Cyclic voltammograms (CVs) for microband electrodes and different values of 
the kinetic parameters and scan rate (Figs 4 and 5) were computed from eqns. (1) 
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Fig. 3. Dimensionless transient at a microband electrode computed from eqn. (1): 
fn(E - E”) = -5.87. Circles are for a diffusion-controlled process [9]. (I and r defined 

A = 5, 
in Fig. 
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2.) 
0.5, 

and (2). One can see from eqn. (1) that the shape of the dimensionless CV is a 
function of A, (Y and the dimensionless potential fn[E(t) -PI. If the initial 
potential and the reversal point are chosen sufficiently far from the peak potential, 
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Fig. 4. Dimensionless CV at microband electrode approaching steady-state behavior: Y = fnuw*/4D = 
0.01; a = 0.5. Curve 1, A = 5; curve 2, A = 0.5; curve 3, A = 0.05; curve 4, A = 5 X 10e3; curve 5, 
A = 5X 10V4 (A = wk, /2D). Circles are from ref. 11 and are computed for a Nemstian charge 
transfer. 



39 

-10’ n n -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 

(E-E”)/V 

Fig. 5. Non-steady-state dimensionless CV at a microband electrode; Y = 100, (I = 0.5. Curve 1, A = 50; 
curve 2, A = 5; curve 3, A = 0.5; curve 4, A = 0.05; curve 5, A = 5 x 10m3. Circles are from ref. 11 and 
are computed for a Nernstian charge transfer. 

the shape of the CV is determined completely by the values of two kinetic 
parameters A and (Y, and the dimensionless scan rate v =fnvw*/40. The magni- 
tude of v, analogous to the “band factor” in ref. 10 determines whether the CV 
approaches steady-state (Fig. 4) or non-steady-state (Fig. 5) behavior. Curves 3-5 
in both figures approach irreversibility, and their peak heights are virtually inde- 
pendent of A. Note that both quasi-steady-state and non-steady-state irreversible 
CVs show a ca. 118 mV shift of the half-peak potential with each order-of-magni- 
tude change of A (Figs. 4(b) and 5(b)). This shift corresponds to RT/anF at 
T = 25°C and a = 0.5, as found previously for the CV at a planar electrode [25] 
and for the steady-state CV at microsphere and microdisk electrodes [26]. The 
curves computed with A = 5, u = 0.01 (Fig. 4(a)) and A = 50, v = 100 (Fig. 5(a)) 
are vitually Nernstian. These curves can be compared with those computed in refs. 
10 and 11. The extraction of the quantitative information from the small CVs given 
in ref. 10 was difficult; thus we compare our data with the reversible linear sweep 
voltammograms simulated in ref. 11. Figures 4(a) and 5(a) show excellent agree- 
ment for both the quasi-steady-state and non-steady-state voltammograms in ref. 
11. 

We also applied this approach to the examination of the interesting experimen- 
tal results obtained with very small microband electrodes [3]. Small microband 
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widths, as discussed above, are particularly useful in studying rapid heterogeneous 
kinetics, and are easily fabricated by the film-deposition technique [3,13]. However, 
it was suggested that CVs obtained with very small band electrodes, i.e. those 
whose widths approach molecular dimensions, cannot be explained without taking 
into account the finite size of the electroactive particles because substantial 
deviations of the experimental curves from those predicted by conventional theory 
were seen [3]. Such a deviation would complicate the use of very small electrodes 
(including microdisks [27]) in studying rapid reactions. However, the conclusions of 
ref. 3 are based on approximate calculations of the expected limiting current using 
an equation for cylindrical diffusion and assuming zero surface concentration. 
Computations according to eqns. (1) and (2) show that the limiting dimensionless 
current for ferrocyanide oxidation under the conditions describDed in ref. 3, with 
k, = 0.1 cm s-l and (Y = 0.5, should be Z = 0.333 for a 500 A wide band and 
Z = 0.280 for a 100 A wide band electrode. The experimental results shown in Fig. 
2 of ref. 3 are about 0.33 and 0.0088. Thus the deviation of the experimental 
results for a 100 A wide band is even larger than that found in the approximate 
treatment [3], i.e. the experimental value is 30 times smaller than expected (rather 
than 5-8 times smaller). Although this might be attributed to new considerations 
that become important when the band dimensions become very small, one must 
also consider the possibility that bands fabricated to these dimensions may deviate 
significantly from the ideally shaped bands assumed in the theoretical computa- 
tions. 

Double-band electrodes 

There have been several previous theoretical treatments of double-band elec- 
trodes [12,13,15]. These have usually dealt with the arrangement where one 
electrode behaves as a generator and produces a product that is detected by the 
second (collector) electrode. In addition to this generator-collector (G-C) mode, 
one can also consider a shielding experiment where the flux of reactant to an 
electrode is intercepted by one or more adjacent electrodes [13]. For example, the 
generator and collector currents have been calculated for the G-C mode under 
the assumption of attainment of steady-state currents [12]. However, as discussed 
above, a true steady state is not achieved for the case of a band geometry, although 
a quasi-steady state should be attained. Several time-independent G-C curves 
which do not indicate the time range corresponding to this near-steady-state 
behavior were given in ref. 12. Computation, via digital simulations, of the 
complete current-time transients was described in ref. 13. Although our model 
allows consideration of a quite general situation (quasi-reversible charge transfer 
with different sets of kinetic parameters for generator and collector electrodes, 
arbitrary shapes of applied signals, non-uniform distribution of surface concentra- 
tions), we present here only the data comparable with the diffusion-controlled 
G-C mode results [12]. 
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Fig. 6. Generator and collector transients computed for (a) a wide range of times and (b), (cl 
corresponding long-time curves: A = 5, cr = 0.5, fn(E, - E") = -5.87, fn(E, - E") = 5.87 and g = 0.5. 
I,, Is and t are defined as in Fig. 2. 

Fig. 7. The collection efficiency I, /I, as a function of normalized time. See Fig. 6 for parameter values. 

The generator and collector current transients shown in Fig. 6 are computed for 
A = 5, fi(E, - E”) = -5.85 and fi<E, - E”) = 5.85, values which assure that the 
process is apparently controlled by diffusion (Fig. 3). Even though the wide time 
range transients at closely spaced generator and collector electrodes (g = 0.5) 
virtually approach steady state (Fig. 6(a)), a more detailed consideration of the 
long-time region (Figs. 6(b) and 6(c)) shows that no actual steady state is achieved 
at t = 1500 (for the case of D = low5 cm* s-l and w = 10 pm, this value is about 
40 s). The collection efficiency is also a function of time (Fig. 71, and it reaches the 
limiting value of about 0.69 at t > 2000. However, the working curve plotted in 
coordinates Z,/Z, versus ZJZ, (Zb is a single-band current under the same 
conditions and at the same time) was virtually the same for any I 2 100 (Fig. 8). In 
conclusion, the steady-state approximation [121 should be precise for small closely 
spaced microbands, i.e. w I l-10 pm and g I l-2. For larger electrodes and 
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Fig. 8. Dimensionless working curve for the double-band electrode. The solid curve represents our 
results computed for g values from 0.01 to 1006 at t = 1456.1; for other parameters see Fig. 6. Circles 
correspond to the theoretical curve plotted in Fig. 5 of ref. 12. 

Fig. 9. Dimensionless transient computed for SECM with an infinite insulated substrate and inlaid tip: 
y = 0.1; for other parameters see Fig. 2. Circles are from ref. 18 and are computed assuming total 
diffusion control (zero surface concentration) at the tip and RG = 10. 

spacings the collection efficiency may be significantly time dependent (in the 
absence of convective effects which become important at longer times). 

Scanning electrochemical microscopy 

As one can see from eqns. (9) and (101, a relatively wide set of parameters is 
needed to characterize the SECM experiment. In addition to the tip radius and 
tip-substrate distance, which are the key parameters for diffusion-controlled 
processes [16,17], in the general case one must also specify heterogeneous kinetic 
parameters for tip and substrate. Moreover, the relative size of the substrate can 
be a factor, unless it is significantly larger than the tip. In this paper we consider 
the tip current transient above an infinite insulator and show that it agrees with 
that calculated using the Krylov integrator [17] and the AD1 method [18]. We then 
consider the SECM CV above a conductive substrate of a size equal to the tip and 
the effect of a homogeneous reaction of the tip-generated product in the gap 
region. 

SECM with an insulating substrate 

This type of experiment is important for surface imaging. The rate of charge 
transfer is not of great interest, but the problem to be solved here is the 
significance of the influence of the insulating sheath geometry on the tip transient 
and especially the near-steady-state current. For SECM with an insulating sub- 
strate this factor is expected to be much more significant than that in the case of 
conductive substrate [16]. At the same time, it is quite difficult to construct the 
rigorous theory for a non-inlaid tip SECM, even in the case of perfect cylindrical 
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geometry of the insulating sheath Cl]. The real SECM tip is usually sealed into a 
conical-rather than cylindrical-glass sheath. The theory for such a geometry is 
unavailable. 

The treatment in ref. 16 describes only the steady-state situation. No estimate 
was made for the time required for this steady state to be achieved. Obviously, the 
influence of the finite insulator radius will be observed only at the time when the 
thickness of the diffusion layer (approximately equal to (OT)‘/2) becomes compa- 
rable with this radius. This condition can be written in the dimensionless form 

(DR:t/D) 1’2 > RGR, or t > RG2 (20) 

For RG = 10, 100 and 1000 [16], the corresponding t values from eqn. (20) are 
102, lo4 and 106. Assuming R, = 5 pm and D = 10e5 cm2 s-l, these values 
correspond to 2.5 s, 250 s and 2.5 x lo4 s. The last two values are impractical in 
actual experiments and even the first is somewhat high for an imaging time-scale. 
For a rate of tip scanning over the substrate surface of 10 pm s-l, the tip 
displacement during 2.5 s is 25 pm, i.e. quite a large value compared with R, = 5 
pm. The conclusion is that the steady-state current recorded during the surface 
observation should be essentially independent of RG, when RG 2 10. 

The validity of this picture can be confirmed by comparison of the transient 
calculated from eqn. (91, assuming an infinite insulating substrate <f, = 0) and 
inlaid tip, with that computed in ref. 18 for RG = 10 (Fig. 9). Despite minor 
discrepancies observed in a short-time region, both curves show the same value of 
steady-state current I,, = 0.059 which is also in good agreement with the value 
given in ref. 16 for RG = 10. This apparent steady state has been achieved at 
t = 30-40, which is significantly smaller than the t = 100 which holds when the 
influence of a finite value RG = 10 becomes noticeable. If we continued the 
calculation of the current using eqn. (91, it would decrease very slowly and should 
reach the values predicted in ref. 16 for RG = 100 and RG = 1000 at the corre- 
sponding times. However, to describe a quasi-steady-state response observed in a 
real SECM experiment, computation of the current to reasonable times corre- 
sponding to the experimental time-scale needs be carried out. Thus, in practice, 
the SECM current is largely unaffected by RG. Notice that an apparent steady 
state is observed at t < 100 with any values of R,, y and RG. While the computa- 
tion of the transient (Fig. 9) using the AD1 method required thousands of time 
iterations, the transient computed by the approach described here used 41 t-points. 

SECM with a conductive substrate 

Although CVs at an SECM tip in close proximity to a conductive substrate were 
obtained experimentally [20], no theory is available under either steady-state or 
non-steady-state conditions. Similarly, no theoretical treatment is available for 
SECM with heterogeneous kinetic effects on the substrate; experimental results 
with the Fe3+-Fe’+ system at a glassy carbon substrate have appeared [22]. The 
dependence of the CV shape on the kinetic parameter A, as well as the effect of 



-0.1 0.0 0.1 0.2 0.3 0.4 0.5 

(E”-E,)/V 

(E”-E, l/V 

Fig. 10. Steady-state tip CV in SECM as a function of the mediator oxidation-reduction 
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1. Curve 1, A, = 25; curve 2, A = 5; curve 3, A = 0.5; cmve 4, A = 0.05. 

rate and the y 
(a) 0.1 and (b) 

the tip-substrate spacing d are shown in Figs. 10 and 11. The sequence of the 
near-steady-state tip CV computed with the different values of A, (Fig. 10) are 
similar to those computed previously for a microdisk electrode [l]. However, as 
proposed earlier [22], at a small value of y (Fig. lo(a)) the half-wave potential is 
more sensitive to the charge transfer rate than is El,z of the microdisk CVs (with 
the same disk radius) at large d. When y increases (Fig. 10(b)), the feedback 
current drops dramatically and the CVs become more closely spaced. Thus in 
studies of heterogeneous kinetic effects at a microdisk [28], the relevant dimension- 
less parameter changes from k,R,/D to k,d/D as a conductive substrate is 
approached by the disk. This suggests that the SECM should be useful for studying 
rapid heterogeneous electron transfer kinetics, since it should be easier to obtain 
very small (and variable) tip-substrate spacings than to produce microdisks with 
equally small radii. 

If the tip and the substrate radii are of the same order of magnitude and they 
are in close proximity, the current flowing at one electrode can be affected by 
changing the potential of the other. For example, a linear sweep of the tip 
potential in a negative direction (the forward portion of Fig. 10(a), curve 2) 
produces an anodic current at the substrate, when its potential is constant and 
held where the tip-generated product is oxidized at the substrate (Fig. 11(a)). In 
this case, the tip behaves as a generator and the substrate behaves as a collector 
electrode. Note that the collection efficiency is near unity, even for a small 
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Fig. 11. Voltammogram-like curves produced at a constant potential-biased substrate by a linear sweep 
of the tip potential (fn(E, - E”) = 5.87): (a) substrate response corresponding to the forward portion of 
the steady-state tip CV (Fig. 10(a), curve 2); (b) non-steady-state tip CV (curve 1) and the substrate 
response (curve 2) at a higher scan rate (v = 100). For other parameters see Fig. 10(b), curve 2. 

substrate (R, = R,) at this value of y. The symmetry of the problem implies that 
identical results will be obtained in a G-C experiment when the tip is the 
collector. One can expect some delay in the substrate response to the change of 
the tip potential, because it depends on the y, D and u values. This delay is not 
seen in Fig. 11(a) because of the small values of y and U. When the sweep is fast 
(or y is not as small) (Fig. 11(b)), the delay between the cathodic peak of the tip 
voltammogram (curve 1) and the substrate anodic peak is substantial. Pairs of such 
curves should contain information about the diffusional and electrochemical kinet- 
ics of the redox couple in the gap. 

SECM appears to be promising in obtaining selective images of materials 
composed of different components [231. These components can be distinguished by 
the difference in the rate constant of the mediator oxidation-reduction at their 
surfaces. Figure 12 allows the effect of As on the steady-state tip current to be 
estimated. The observed tip current can be understood in terms of two opposite 
tendencies. The blocking effect of the substrate tends to decrease Zt when A, is 
small (tending to ideal insulator behavior at As = O), and the positive feedback 
effect tends to increase Zt when As is large and y is small. Several conclusions can 
be drawn from Fig. 12. 
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Fig. 12. Dependence of the steady-state tip current on A,. a = 0.5, fn(E, - E”) = - 5.87 with (a) y = 0.1 
and (b) y = 1: curve 1, fi(E, - E”) = 5.87; curve 2, fn(E, - E”) = 0. The horizontal line corresponds to 
zero feedback current. A, = R,/c,,~ /D. 

(i) When the tip is sufficiently close to the substrate (Fig. 12(a)), one can 
distinguish between the substrate components with a ratio of rate constants as low 
as 2:l. 

(ii) By choosing the proper E, value, one can image the more electroactive part 
of the substrate as a conductor (Zss > 1 and dZ,,/dy < 0) and the less active part as 
an insulator (I,, < 1 and dZ,,/dr > O), as was shown experimentally in ref. 23. 

(iii) Comparing curves 1 in Figs. 12(a) and 12(b), and curves 2 in Figs. 12(a) and 
12(b), one can see that a substrate with the same values of A, and Es may behave 
as a conductive substrate when it is close to the tip, and as an insulating substrate 
at larger y. Clearly the conductive (positive feedback) or insulating (blocking) 
effect of the substrate is determined only by the average value of the mediator 
concentration c,(t, 7) generated by the substrate at a distance y from the tip 
surface. If this value is greater than c-&0, r> (the concentration value at the same 
distance from the tip which would exist if the substrate were removed), a conduc- 
tive substrate is observed. If co&, y) < c&Jr, y), the substrate looks more like an 
insulator. Since c&0, y) increases with y, the same substrate may appear as a 
conductor when y is small, and as an insulator at larger y values. This effect 
should be observed experimentally when E, is not very high. 

(iv) The steady-state current computed with a small y and an E, value close to 
E” is the most sensitive to A,. There is a significant difference (about 10%) 
between Z,, values corresponding to As = 25 and A, = 50. These measurements 
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Fig. 13. The tip current computed for SECM with a conductive substrate of the same size as the tip: 
E, = - E,, A, = 5; other parameters are the same for both the tip and the substrate (see Fig. 12) Curve 
1, y = 0.1; curve 2, y = 1. Circles are from ref. 18 and are computed for an infinite conductive substrate 
and total diffusion control (very large k,). 

may be useful in the determination of kinetic parameters for very fast reactions. 
The ratio of the tip to the substrate steady-state currents (if the latter is also a 
microdisk) is quite sensitive to the As value. 

In the case of a conductive substrate the effect of the geometry of the insulator 
surrounding the tip (RG) is unimportant [16] because the steady state is achieved 
in a very short time and the steady-state current is quite high. The influence of the 
substrate size is more interesting, because it can lead to erroneous interpretations 
of the image when the observed surface includes small areas (of the order of R,) 
composed of different materials. As expected, the positive feedback tip current is 
about 20% higher in the case of an infinite conductive substrate compared with 
one of finite size (R, = R,), and either y = 0.1 or y = 1 (Fig. 13). If the rates of the 
electrochemical reaction at different parts of the substrate are of the same order of 
magnitude, this effect can also be quite substantial. 

Incorporation of homogeneous chemistry in the gap 

Many first-order homogeneous chemical reactions coupled with charge transfer 
can be incorporated into microelectrode theory using an approach similar to that 
proposed in ref. 29 for semi-infinite linear diffusion. A general discussion of this 
topic is beyond the scope of this article, and we present here only the example of 
SECM equations for E,C, (quasi-reversible charge transfer followed by the irre- 
versible first-order chemical reaction) (see also ref. 18). The dimensionless diffu- 
sion problem for this case is as follows: 

acOx a2cox a2cox 1 acox - = -+ -+-- 
at az2 ar2 r ar 

O<t,Olr,O<z<y (21) 

ac Red a2CRed a2CRed -+- ’ aCRed R: -= 
at az2 i3r2 +T ar 

--ok O<t,Olr,O<z<y (22) 

t=O,Olr,O<z<y c&O, r, z) = 0 CRed(O, rP z, = 0 (23) 
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O<t,OIr<l,z=O; 

f& r> = --A1( P - cfi( t, r, 011 exp{ -~,f,+,(t) -E”]} 

-CR&f, r, 0) exp{(l -+f,n[&(t) -E”]}); 1 <r, f,(t, r) =0 

(24) 

O<t,O<r<h, z=y; 

fs(t, r) = -&([l -cod t, r, r)] em{ -~,fs~[~dt) -E”l} 

-cRed(t, r,r> e~((l-cr,)f,n[E,(t)-E”]}); h<r,f,(t, r)=O 

(25) 

Equation (21) was solved in ref. 1, and the expressions for c&, r) at the tip 
and substrate surfaces were obtained; thus only the solution of eqn. (22) is of 
interest here. Applying Laplace and Hanckel transformations to eqn. (22) taking 
into account eqn. (23), as in ref. 1, yields 

d2+, p, z) 

dz2 
- (p2 + k, + s)Z(s, p, 2) = 0 (26) 

where k, = kR:/D. The only difference between eqn. (26) and eqn. (15) in ref. 1 is 
the presence of the additional constant k, associated with the chemical reaction. 
The method of solving eqn. (26) is completely identical to that described in ref. 1 
and leads to the following expressions for surface concentrations: 

ca& rP 0) 

= _&fu dul:erm[-(r2+u2)/4(t-7) -W-T)] 
t-7 

ru 
XI0 

[ I 2(t - 7) 

XIo[ 2(t: T)] ( fs(7, .)a,[ol y r)] +ft(T, u)s,[o~ y; “I) dT 

Combination of eqns. (27) and (28) with eqns. (42) and (43) from ref. 1 (for the 
surface concentrations of the oxidized form) and the Butler-Volmer eqns. (24) and 
(25) yields the solution of the E,C, problem for the SECM. Analogous solutions 
can be derived for the other microelectrode geometries considered in ref. 1. 
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CONCLUSIONS 

This study has demonstrated that the theory for a wide class of microelectrodes 
can be addressed using the multidimensional integral equation approach, and only 
minor changes are required to switch from one type of geometry to another or to 
incorporate first-order homogeneous reactions. The computational efficiency of 
this method is very high. The accuracy of the results is virtually independent of the 
spatial grid features. Most of the data necessary for comparison with experiments 
can be computed and presented in the form of dimensionless working curves. 
Currently, computer programs are under development that involve more versatile 
temporal grids. 
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NOMENCLATURE 

aj-1, aj 

'lj 
b, b, 
CC?, r, 2) 

Co 
d 

El,2 
E(t) 

g 

h 

Z(T), Z(t) 
49 4 
Z ss 

ICI 
k 
L 

boundaries of the jth integration subinterval over the electrode 
surface 
elements of the matrix A in eqn. (3) 
column vector on the right-hand side of eqn. (3) and its elements 
dimensionless surface concentrations of the electroactive species 
as functions of spatial variables and time. The subscript Ox 
relates to the oxidized form and the reduced form 
bulk concentration 
distance between tip and substrate electrodes in SECM 
half-wave potential 
instantaneous value of the electrode potential; the subscripts t, s, 
g and c relate to the tip, the substrate, the generator and the 
collector electrode respectively 
ratio of the gap width to the band width for a double-band 
electrode 
ratio of the substrate radius to the tip radius 
faradaic current and the same variable in dimensionless form 
dimensionless generator and collector currents 
dimensionless steady-state current 
modified Bessel function of the first kind of order zero 
first-order homogeneous rate constant 
microband length 
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43 Rs 
R, r 

RG 

T, t 

v, v 
W 

x, x 

Y 

4 At, A, 

ei(O I Y) 

tip and substrate radii in SECM 
radial distance from the tip center and the same variable in the 
dimensionless form; r = R/R, 
ratio of the radius of the glass sheath surrounding the tip to R, 
time and its dimensionless value equal to DT/Rf for the SECM 
and 4DT/w2 for a microband electrode 
scan rate and the same parameter in the dimensionless form 
microband width 
normal distance from the band electrode surface and the same 
variable in the dimensionless form: x = 2X/w 
= d/R, dimensionless distance between two electrodes in the 
SECM 
dimensionless kinetic parameters, equal to wk,/2D, R,k,,/D 
and R,k,,JD for a microband, SECM tip and substrate respec- 
tively 
8 functions, i = 1, 2, 3, 4 

Other symbols are defined in Part 1 [l]. 
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