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ABSTRACT

A digital simulation technique has been used to treat electrode reactioru;
occurring at the rotating ring-disk electrode (RRDE) .The method of treat..
ing normal diffusion, normal and radial convection, and homogeneous ki..
netics at the RRDE is discussed and results for the transient and steady..
state currents at the disk and ring electrodes in the absence of kinetic corn..
plications are given. Where comparisons are possible, the simulated results
were found to be in excellent agreement with previous theoretical treatments.

under any imaginable kinetic situation. The simulation
technique used is a modification of that introduced to
electrochemical problems by Feldberg (12) and most
fully described in a recent chapter ( 13) .This paper
also discusses the mathematical background of the
method and gives a detailed description of other ap-
plications of this technique.

The principal problem encountered in simulating
the RRDE is that, due to the normal and radial con-
vective flow. the concentrations of all species are func-
tions of two spatial variables. X, the normal distance
from the electrode surface. and R, the radial distance
-1 the axis of rotation. It is here that this paper

Jrs from those previously presented.

Digital Simulation Method
Digital modeL.-In a digital simuls.tion of an electro-

chemical system, one first divides the solution into a
number of small volume elements. These volume
elements will henceforth be called "boxes" regardless
of shape. The shapes of these boxes are chosen in such
a way that one can reasonably assume that the solu-
tion within each box is homogeneous. For an RRDE,
the symmetry of the system suggests the following
model. The solution is first divided into thin parallel
layers which are :lx cm thick. The electrode is placed
in the center of the first layer, parallel to the planes
dividing the layers. Then each layer is divided into a
cylindrical box of radius 1fl ~T cm which is centered
about the axis of rotation, and a series of concentric
annular boxes ~T cm wide (Fig. 1) .The parameter ,
:!T. is chosen in such :1 wav that thl~ pertinent radii of
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The rotating ring-disk electrode (RRDE) was in-
troduced in 1959 by Frumkin and Nekrasov (I). The
addition of a ring electrode to the rotating disk elec-
trode permitted the detection of products formed by
electrode reactions and provided a steady-state
method for investigating coupled chemical reactions.
However, the mass transfer conditions existing at the
RRDE are rather complex, and the mathematical
treatment of the RRDE, especially in the presence of
kinetic complications, is difficult. A general mathe-
matical treatment was not given until 1966 when a
series of papers by Albery and Bruckenstein (2-9) ap-
peared. In these papers, Albery and Bruckenstein pre-
sented an exact treatment of the steady-state collec-
tion efficiency as a function of electrode geometry in
the absence of kinetic complications (3). They also
presented approximate treatments of first- and second-
order follow up reactions. Unfortunately, as pointed
out by Albery (10), the treatment of the first-order
case is not applicable to any practical electrode with-
out further approximations. Their second-order treat-
ment is limited to certain regions of rotation rate and
rate constant. Furthermore, expansion of these treat-
ments to more complex mechanisms, such as ECE re-
actions and electrogenerated chemiluminescence ( II) ,
seems unlikely.

In this series of papers, we present the results of the
application of a digital simulation technique to this
problem. This technique is capable of generating a
theoretical workinfl curve for any particular electrode
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If we let t2 -ti = ~t,
distance of a
trode surface at the
interval, ~t. In terms
tance from the
box is given by (J -1) (~X). Let

XJ = J -1
and

X1 = XJ(4X)

then X2 is the position in the old array of
volume which will be in the center of
the end of the time interval, 4t. It is convenient

X2 = (XJJ) 4X [18]

where XJJ is a nonintegral distance from the electrode
expressed in terms of numbers of boKes.

We can now rewrite Eq. [15] as

1 1
--= -0.51..,312 v-112 ~X .).t [19]

XJXJJ
or

XJJ = XJ/[l -(XJ) (0.51 ",3/2,,-1/2 :lX:lt) ] [20]

The product (0.51 ",3/2 ,,-1/2 IlX~t) is dimensionless
and is designated VNAUT. that is

VNAUT = 0.51 ",3/2 ,,-w: IlXllt [21]

From Eq. [11]
[22]~x = (DA~t/DMA) 1/2

Thus
VNAUT = 0.51 ",3/2DA1/2 J1-1/2DMA-1/2::1t:l/:!

\

Using Eq. [12]

V NAUT = 0.51 ",3/2 D A 1/2 J1-1/2 DMA -1/2 tk:l/2 L -3/2

Letting

[24]

tk = 1 V1/3 DA -1/3 (0.51) -2/3

.

~

VNAUT = DMA-l/2L-3/2 [26]
then

XJJ=XJ/[l- (XJ)(VNAUT)] [27]

Note that the above substitutions render the calcu-
lation of the effects of convection not only dimension-
less, but also strictly in terms of simulation variables.
By replacing the concentrations now at the center of
each box with the concentrations at the distance cal-
culated from Eq. [27], a new array representing the
effects of diffusion and convection normal to the elec-
trode for a time, f).t, is generated.

In a similar manner, the effects of convection in the
radial direction can be calculated. Beginning with the
equation for fluid velocity in the radial direction near
the electrode ( 15 )

VR = -0.51.,3/2 v-112 XR [28]

where R is the distance from the axis of rotation, one
obtains

dR/dt = -0.51 ",3/2 v-l/3 XR [29]

Solving Eq. [29] one obtains

In(R2) -In(Rl) = -0.51 ",3/2 v--l/2 X (t2 -t1) [30]

As before, R2 and Rl are the positions of a solution
volume at times t2 and t1. Rearranging and substitut-
ing for X and (t2 -tl)

In (Rl/R2) = 0.51 ",3/2 v-l/2 XJ f).X f).t [31]

[32]

[33]

If we let
Rl = RK (~r)

FB (1,K) = 0.0
Fx(1,K) =0.0 [6]

At the initiation of electrolysis, t = 0, the boundary
conditions for the disk box in the case of a potential
step to the limiting current region are

FA(I,I) = 0.0
FB(I,I) = 1.0
Fx(I,I) = 0.0 [7]

For those first layer boxes which correspond to the
ring electrode, the initial boundary conditions are

FA(I,KR) = 1.0
FB ( I,KR) = 0.0
Fx ( I,KR) = 0.0 [8]

where KR represents all values of K corresponding to
the ring electrode region.

Diffusion effects.-These conditions set up a concen-
tration gradient between the first and second layer
disk boxes (1 = 1, K = 1) and (1 = 2, K = 1), which
gives rise to diffusion across the boundary between
these boxes. The amount of material crossing the
boundary in At seconds can be calculated using the
finite difference representation of Fick's second law

~FA(1,K) = DMA[FA(1 + 1) -FA(1,K)]
-DMA[FA(1,K) -FA(1 -I,K)] [9]

or
~FA(1,K) = DMA[FA(1 + I,K)

-2FA(1,K) + FA(1 -I,K)] [10]

This states that for any time interval, At, the change
in the fractional concentration of species A in the
1,Kth box is the difference between the amount of A
entering from the adjacent box of higher concentra-
tion and the amount of A going into the adjacent box
of lower concentration. The amount entering or leav-
ing the box is proportional to the concentration gradi-
ent across the boundary. The proportionality factor ,
DMA is given by

DMA = DA At/(AX)2 [11]

where DA is the diffusion coefficient of species A and
AX is the width of one layer. The parameter, .;It, is
defined below. By applying Eq. [10] to all boxes and
then replacing FA(1,K) by FA(1,K) + AFA(1,K), a
new array of concentrations is generated which repre-
sents the effects of diffusion for a time interval ~t. The
concentrations of species B and X are similarly
treated. For this technique to converge, DMA must
have a value less than 0.5 ( 13) .In most of these cal-
culations, DMA was taken to be 0.45.

Convection effects.-The parameter, At, is the real
time length of one iteration. Thus

At = tk/L [12]

where tk is some experimentally known time or time
dimensioned variable, and L is the number of itera-
tions used to simulate that time. To evaluate the ap-
propriate form of tk, consider the equation for the
velocity of convective fluid flow in the direction nor-
mal to the electrode. In the region near the electrode,
this is given by (15)

Vx = -0.51 ",3/2 v-1/2 X2 [13]

where "' is the rotation rate in radians/second, v is
the kinematic viscosity in square centimeters per sec-
ond, and X is the distance from the electrode surface.
The velocity in the X direction may be represented
by the derivative, dX/dt. Thus

dX/dt = -0.51 ",3/2 v-1/2 X2 [14]

Solving the above, for X and evaluating between t2
and t1, one obtains

1 1
---::::- = -0.51 ",3/2 v-1/2 (t2 -ti) [15]

and
R2 = RKK(~r)

and combine terms, we get

In(RK/RKK) = (VNAUT) (XJ)
and finallyX2 Xl
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plateau, since F A ( 1,1) = 0.0, the fractional flux be
comes

FFA(l) = DMAFA(2,1) [49]

The dimensionless parameters on each side of Eq. [48]
are called ZD. Thus, in terms of experimental vari-
ables

ZD = idi(0.51)1/3 nFAvCoADA2/3 ",1/2,,-1/6 [50J

while in terms of the simulation

ZD = DMAI/2 FA (2,1) L1/2 [51]

Similarly, the current at the ring elec:trode can be
calculated. Using Eq. [ 47]

i,./(0.51) 1/3 nFADCoADB2/3 ",1/2,,-1/6

= L1/2DMB-1/2 2: FFB(K)A(K)/AD [52]
KR

where the summation is over all radial boxes, K, cor-
responding to the ring electrode.

The dimensionless parameter on each side of Eq.
[52] are called ZR. Thus, in terms of experimental
variables

ZR = ir/(0.51)1/3 nFADCoADB2/3 ",1/2,,-1/6 [53]

while in terms of simulation variables

ZR = L1/2DMB-1/2 2: FFB(K) A(K)/AD [54]
KR

If the potential at the ring is such that all B reaching
the ring is instantly converted into A, then FB (l,KR)
=0.0 and Eq. [ 43] becomes

FFB (KR) = DMBFB (2,KR) [55]

Therefore, Eq. [54] becomes

ZR = L1/2 DMB1/2 2: FB (2,K) A (K) / AD [56]
KR

~

RKK = RK exp [ -(VNAUT) (XJ) ] [35]
where

RK = K + IR1 -2 [36]

and is the radial distance of the solution volume in
the center of the Kth box from the axis of rotation.
RKK is the present position of the solution volume
which will be at RK at the end of the ~t interval.
Equation [35] allows the generation of an array of
concentrations which represents the effects of diffusion
and both normal and radial convection for a time, ~t.

Kinetic effects.-For a first order disappearance of
species B from the J, Kth box, one can write the rate
law in the form

~CB(J,K)/~t = -kCB(J,K) [37]

Normalizing the concentrations by dividing both sides
of the equation by COA, and remembering that FB(J,K)
= CB(J,K)/COA, we have

~FB(J,K) = -k~tFB(J,K) [38]

or substituting for ~t

;lFB (J,K) = -[k l p-l/3 DA -1/3 (0.51) -2/3]FB (J,K) /L
[39]

The dimensionless collection of terms in brackets in
Eq. [39] is called X KT, so that

X KT = k l pl/3 DA-l/3 (0.51) -2/3 [40]

This is the dimensionless rate parameter which is
used in the calculations. Rewriting Eq. [39] , we get

~FB (J ,K) = -X KT [FB (J ,K) ] /L [ 41]

Similarly, the expression for the appearance of species
X is

Note that

j).Fx(J,K) = XKT[FB(J,K)]/L = -j).FB(J,K) [42]

By replacing FB(J,K) with FB(J,K) + j).FB(J,K) and
Fx(J,K) with Fx(J,K) + j).Fx(J,K), an array of con-
centrations which represents the concentration profile
one would expect to observe under these conditions
after j).t seconds is generated.

Calculation of current.-The\fractional flux of a spe-
cies, Z, moving from a J = 2 box into a J = 1 box is

given by

ZR/ZD = (ir/id) (DA/DB) 1/2 [57]

The quotient ir/id is the collection efficiency, N. Thus

ZR/ZD = N(DA/DB)1/2 [58]

Though it is not necessary to do so, w-e will assume
that DA = DB, and thus

ZR/ZD = N [59]

Redefinition of boundary conditions.--At this point,
the first iteration in the calculation is completed- It is
now necessary to modify the boundary conditions at
the disk and ring electrodes as follows.
At the disk

FA'(l,l) = 0.0 [60]

FB'(l,l) = FB(l,l) + DMA[FA(2,1)]
-DMB[FB(l,l) -FB(2,1)] [61]

Fx'(l,l) = Fx(l,l) -DMx[Fx(l,l) -Fx(2,1)] [62]

Equation [61] states that the new fractional concen-
tration of B at the disk, FB'(l,l), is the old fractional
concentration of B at the disk, FB(l,l), plus the
amount of A which diffused into the disk and is
transformed (with passage of current) into B, less the
B which diffuses out.

Equation [62] states that the new concentration of
X at the disk, Fx' ( 1,1) , is given by the old concentra-
tion less the X which diffuses out.

The new boundary conditions at the ring electrode
are

FA'(l,KR) = FA(l,KR) + DMB[FB(2,KR)]
-DMA[FA(l,KR) -F.\(2,KR)] [63]

FB'(l,KR) = 0.0 [64]

Fx'(l,KR) = Fx(l,KR) -DMx[Fx(l,KR;1 -Fx(2,KR)]
[65]

FFz(K) = DMz[Fz(2,K) -Fz(l,K)] [43]

The contribution to the current from a given box, K,
can be expressed as

i(K) = [FFz(K)] (CoA) [A(K)ilX] (nF)/ilt [44]

where A(K) is the area of the Kth box (thus A(K)ilX
is the volume of that box) .Rearranging and substitut-
ing for ilX and ilt we get

i(K)/nFCoA = FFz(K) A(K) DZ1/2 DMz-l/2 Ll/2 tk-l/2
[45]

Substituting for tk and rearranging we have

i (K) ! (0.51) 1/3 nFCoA Dz2/3 ",1/2 1/-1/6
= FFz(K) A(K) L1/2 DMz-1/2 [46]

If we divide both sides of Eq. [46] by the area of the
disk electrode, AD, we have

i(K)!(0.51)l/3 nFADCOADz2/3 ",1/2 1/-1/6
= FFz(K)L1/2DMZ-1/2 A(K)!AD [47]

Both sides of Eq. [47] are now dimensionless and the
simulation variables are all on one side of the equa-
tion.

Equation [47] can be used to calculate the current at
the disk electrode. That is

id! (0.51) 1/3 nFADCOADA2/3 ",1/2 1/-1/6
= FFA(l) L1/2 DMA-1/2 [48]

In the case of a potential step to the limiting current
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Fig. 2. Simulated disk current transient for potential step at disk :
0 theoretical work of Bruckenstein and Prager (17); (::1 theoretical
work of Siver (1 B).

Figure 2 shows the simulated disk current transient.
The solid line is actually two ('urves, one generated
using L = 1000 and the other using L = 50 and the
correction factors. For all practi,~al purposes, they are
identical. The simulated curve i.~ also compared with
the theoretical and experimental work of Prager and
Bruckenstein ( 17) and the approximate treatment of
Siver (18). Both are in good agreement with the
simulation.

Figure 3 shows the concentration profile of species A
at steady state as \a function of distance from the
electrode surface in the normal direction. Curves b
and c are the results of simulations using L = 1000,
and L = 50 and the correction factors, respectively.
On this scale, they are indistinguishable. Curve a is
the theoretical concentration profile given by Riddiford
( 19) .The agreement is quite satisfactory and indicates
that the correction factors do not adversely affect the
concentration profile.

Collection efficiencies.-Table I presents the simu-
lated collection efficiencies in the absence of kinetics
for a number of different elCi~trode geometries. In
these calculations L = 50 and the correction factors
given in Eq. [71] and [72] were used. In all cases the
simulated collection efficiencies are in excellent agree-
ment with the theoretical collection efficiencies of
Albery and Bruckenstein (3) .Identical steady-state
collection efficiencies are also predicted when the
boundary conditions at the disk electrode correspond
to a constant current step rather than a potential step.
This is as would be expected. Furthermore, the steady-
state collection efficiencies are unaffected by the mag-

At this point the calculation of the effects of diffu-
sion, convection and kinetics are repeate4, then cur-
rents are calculated at t = 2At, and the process is
continued until steady state is reached.

Boundary conditions for constant current.-It is also
of interest to simulate the application of a constant
current step to the disk electrode. This is done simply
by modifying the disk electrode boundary condition
in the above simulation. The boundary conditions for
constant current at the disk are given by

FA'(l,l) = FA(l,l) -FLUX
-DMA[FA(l,l) -FA(2,1)] [66]

FB'(l,l) = FB(l,l) + FLUX
-DMB[FB(l,l) -FB(2,1) ] [67]

Fx'(l,l) = Fx(l,l) -DMx[Fx(l,l) -Fx(2,1)] [68]

where FA', FB', and Fc' are the new fractional concen-
trations of species A, B, and C; FA, FB, and Fc are the
old fractional concentrations. FLUX is the amount of
A transformed into B by electrolysis during each At
interval and is given by

FLUX = (icc/iL) (0.776) (DMA/L) 112 [69]

where icc is the applied constant current and iL is the
limiting current for species A.

Results
A Fortran program based on the methods of the

previous section was written; a listing and discussion
of this program is available (16). Calculations for a
number of different electrode geometries were carried
out on a Control Data Corporation Model 6600 com-
puter and processing times quoted refer to compilation
and execution times on this.

Effect of number of iterations.-From Eq. [12] and
[22] it is clear that the number of iterations, L, deter-
mines the magnitude of Ax and At; the larger L, the
closer the simulation will approximate the physical
system. A simple test of the simulation is to compare
the computed steady state current at the disk with that
predicted by the Levich equation (15)

is.s. = 0.62 nFACoD213",112v-116 [70]

When L = 50, the simulated steady-state current at
the disk electrode is only 96.5% of the Levich equation
limiting current. When L = 1000, however, the simu-
lated disk current is 99.5% of the theoretical current.
Similar results are obtained for the simulated collec-
tion efficiency. A simulation with L = 50 yields a col-
lection efficiency 9% higher than that predicted by
Albery and Bruckenstein (3) for an electrode with
IR1 = 83, IR2 = 94, and IR3 = 159. When L == 1000,
the simulated collection efficiency agrees to within
0.5% with the theoretical value.

Unfortunately, the computation time required to
attain the steady state when L = 1000 is prohibitively
long, requiring about 25 min of computer time. It was
found, however, that identical results could be ob-
tained from a simulation with L = 50, which requires
only 25 sec of computer time, if a slight modification
is made in the calculation of the effects of convection.

If Eq. [27] and [35] are modified as follows

XJJ = XJ/[1.0 -(1.11. XJ .VNAUT)] [71]

RKK = RKexp [-1.03(XJ) (VNAUT)] [72]

the results obtained with L = 50 are in close agree-
ment with those using L = 1000 and the unmodified
convection equations. The introduction of adjustable
parameters into digital simulations involving convec-
tion has been successful in other cases ( 13) .Note that
the factors in Eq. [71] and [72] are valid only for
L = 50 and DMA = 0.45. There will be slightly differ-
ent factors for different values of these parameters.

XI.

Fig. 3. Concentratian profile of species at the disk: a, theoretical

curve by Riddiford (19) ; b, simulated ,:urve, L = 1000; c, simu-

lated curve, L So, correction f~ctors used. h 1.805
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