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ABSTRACT

A digital simulation technique has been used to treat electrode reactions
occurring at the rotating ring-disk electrode (RRDE). The method of treat-
ing normal diffusion, normal and radial convection, and homogeneous ki-
netics at the RRDE is discussed and results for the transient and steady-
state currents at the disk and ring electrodes in the absence of kinetic com-
plications are given. Where comparisons are possible, the simulated results
were found to be in excellent agreement with previous theoretical treatments.

The rotating ring-disk electrode (RRDE) was in-
troduced in 1959 by Frumkin and Nekrasov (1). The
addition of a ring electrode to the rotating disk elec-
trode permitted the detection of products formed by
electrode reactions and provided a steady-state
method for investigating coupled chemical reactions.
However, the mass transfer conditions existing at the
RRDE are rather complex, and the mathematical
treatment of the RRDE, especially in the presence of
kinetic complications, is difficult. A general mathe-
matical treatment was not given until 1966 when a
series of papers by Albery and Bruckenstein (2-9) ap-
peared. In these papers, Albery and Bruckenstein pre-
sented an exact treatment of the steady-state collec-
tion efficiency as a function of electrode geometry in
the absence of kinetic complications (3). They also
presented approximate treatments of first- and second-
order follow up reactions. Unfortunately, as pointed
out by Albery (10), the treatment of the first-order
case is not applicable to any practical electrode with-
out further approximations. Their second-order treat-
ment is limited to certain regions of rotation rate and
rate constant. Furthermore, expansion of these treat-
ments to more complex mechanisms, such as ECE re-
actions and electrogenerated chemiluminescence (11),
seems unlikely.

In this series of papers, we present the results of the
application of a digital simulation technique to this
problem. This technique is capable of generating a
theoretical working curve for any particular electrode

under any imaginable kinetic situation. The simulation
technique used is a modification of that introduced to
electrochemical problems by Feidberg (12) and most
fully described in a recent chapter (13). This paper
also discusses the mathematical background of the
method and gives a detailed description of other ap-
plications of this technique.

The principal problem encountered in simulating
the RRDE is that, due to the normal and radial con-
vective flow, the concentrations of all species are func-
tions of two spatial variables, X, the normal distance
from the electrode surface, and R, the radial distance
from the axis of rotation. It is here that this paper
differs from those previously presented.

Digital Simulation Method

Digital model.—In a digital simulstion of an electro-
chemical system, one first divides the solution into a
number of small volume elements. These volume
elements will henceforth be called “boxes” regardless
of shape. The shapes of these boxes are chosen in such
a way that one can reasonably assume that the solu-
tion within each box is homogenecus. For an RRDE,
the symmetry of the system suggests the following
model. The solution is first divided into thin parallel
layers which are Ax cm thick. The electrode is placed
in the center of the first layer, parallel to the planes
dividing the layers. Then each layer is divided into a
cylindrical box of radius % Ar cm which is centergd
about the axis of rotation, and a series of concentric
annular boxes Ar cm wide (Fig. 1). The parameter,
Ar. is chosen in such a wav that the pertinent radii of
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Fig. 1. Digital simulation model of the rotating ring disk elec-
trode.

the electrode, r; (the radius of the disk electrode),
r» (the radius to the inner edge of the ring electrode),
and r3 (the radius to the outer edge of the ring elec-
trode), can be satisfactorily approximated by

ry = (IR1-0.5) (Ar)
ry = (IR2-0.5) (A7)
r3 = (IR3-0.5) (A7) [1]

where IR1, IR2, and IR3 are integers and correspond
to the number of boxes necessary to represent the
particular radial distances. Obviously, the smaller ar
is (i.e., the greater the number of annular boxes),
the better the approximation is likely to be. Un-
fortunately, the number of boxes must be weighed
against the length of computation time and some com-
promise reached.

In the interest of minimizing computation time, one
can very reasonably assume that the disk electrode is
a uniformly accessible surface. This condition holds
under usual experimental conditions where an excess
of supporting electrolyte is present (14). This means
that in each layer, the solution in the cylindrical
volume of radius (IR1-0.5) (Ar) centered about the
axis of rotation is homogeneous and can be repre-
sented by one large cylindrical box.

For the sake of simplicity the following convention
is used. Each box is referred to by its layer number,
J, and its radial number, K. The layer containing the
electrode is the J = 1 layer, and all other layers are
- numbered consecutively outward from the electrode.
Within any layer, the large central cylindrical box is
called the K = 1 box, and all the annular boxes are
numbered consecutively outward from this box. The
large cylindrical box in the first layer (J =1, K = 1)
corresponds to the disk electrode. Similarly, the ap-
propriate first layer ( J = 1) annular boxes corre-
spond to the gap region, the ring electrode region, or
the outer insulation region.

A concentration for each of the active species in
solution is then assigned to each box. This concentra-
tion is associated with the center of each box. Thus, in
the particular case of the boxes in the first layer,
the concentrations in those boxes correspond to the
concentrations at the electrode surface. Before elec-
trolysis begins, all boxes are assigned concentrations
which correspond to the bulk concentration of the
“solution. At the beginning of electrolysis, t = 0, the
concentrations in those first layer boxes corresponding
to the disk and ring electrodes are changed to reflect
appropriate boundary conditions. These changes re-
sult in a concentration gradient between some of the
corresponding boxes in the first and second layers.
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Using a finite difference representation of Fick’s sec-
ond law, the extent to which the concentrations in
these boxes dre changed by diffusion across the
boundary between them in a time interval, at, is cal-
culated. These changes in the original array of concen-
trations produce a new array reflecting the effects of
diffusion during this first time interval. In all calcu-
lations we assume, following the arguments of Albery
and Bruckenstein (3), that radial diffusion is negli-
gible when compared with radial convection:

In the case of a rotating electrode, convection is also
taking place during the same time interval, At. From
the treatment by Levich (15) of convection to a T10-
tating disk electrode one can calculate the normal and
radial components of fluid velocity at any point near
the electrode. Thus, one can calculate the distance a
given fluid volume will travel in the normal and
radial directions in a time, at. If, for example, this
calculation reveals that the volume element in the
Kth ring of the Jth layer at the end of At seconds has
traveled a distance AJ in the normal direction and a
distance AK in the radial direction, then by replacing
the concentration in the J, Kth box in the existing
array with the concentration at J + AJ, K — aAK, a
new array is generated which reflects the effects of
both diffusion and convection for a time At.

1f, in addition, one or more species undergo homo-
geneous reactions, this can be simulated by calculat-
ing, for each box containing the appropriate species,
the amount by which each species will be depleted or
increased according to the appropriate rate law in a
time At. This generates an array which represents the
expected concentration profile of the simulated system
at a time At after the initiation of electrolysis. From
this profile, the current observed at this point in an
experiment can be calculated by assuming that the
current is proportional to the difference between the
concentrations in the corresponding boxes in the first
and second layers, i.e., the flux at the electrode sur-
face. After making the adjustments to the concen-
trations in the appropriate boxes due to the passage of
current, the above process is repeated to give a new
concentration profile and current at t = 2t and so
on until the steady state has been attained. In the
limit, as Ax = 0, At - 0, and Ar —» 0, the calculated
current-time behavior and the steady-state currents
should approach those observed experimentally.

Initial and boundary conditions.—Let us now con-
sider the simulation in greater detail by discussing
the following situation. The solution initially contains
only species A at bulk concentration Ce,. At time
t = 0, the potential of the disk electrode is stepped
to a potential on the limiting current plateau for the
reaction

A+ne—>B [2]

We consider the case where species B undergoes a first
order homogeneous reaction to give some electroin-
active species, X, by the reaction

k1
B— X [3]

The potential of the ring electrode is such that all B
reaching the ring electrode is instantaneously con-
verted back to A by

Bxne— A [4]

In digital simulations, to make each computation as
general as possible, all calculations are done in terms
of dimensionless parameters. Hence, all concentrations
are normalized with respect to the initial concentra-
tion of bulk species A, Thus, the initial fractional con-
centration of species A in any box is

Fa(J,K) = Coa/Cos = 1.0 (5]

and the fractional concentrations of species B and X
are
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Fg(J,K) = 0.0
Fx(J,K) =0.0 (61
At the initiation of electrolysis, t = 0, the boundary

conditions for the disk box in the case of a potential
step to the limiting current region are

Fa(1,1) =00
Fp(1,1) =10
Fx(1,1) = 0.0 [71

For those first layer boxes which correspond to the
ring electrode, the initial boundary conditions are

Fs(1,Kgr) = 1.0
Fg(1,Kr) = 0.0
Fx(1,Kr) = 0.0 (8]

where Kgr represents all values of K corresponding to
the ring electrode region.

Diffusion effects.—These conditions set up a concen-
tration gradient between the first and second layer
disk boxes (J =1, K =1) and (J = 2, K= 1), which
gives rise to diffusion across the boundary between
these boxes. The amount of material crossing the
boundary in At seconds can be calculated using the
finite difference representation of Fick’s second law

AFA(J,K) = DMA[Fa(J 4+ 1) — FA(J,K)]
—DM4A[FA(J,K) — Fa(J — 1,K)]1 [9]

or
AFA(J,K) = DMA[FA(J + 1K)
— 2FA(J,K) 4 Fa(J — 1L,K)] [10]

This states that for any time interval, At, the change
in the fractional concentration of species A in the
J,Kth box is the difference between the amount of A
entering from the adjacent box of higher concentra-
tion and the amount of A going into the adjacent box
of lower concentration. The amount entering or leav-
ing the box is proportional to the concentration gradi-
ent across the boundary. The proportionality factor,
DM, is given by

DM, = Dy At/ (AX)2 [11]

where D, is the diffusion coefficient of species A and
AX is the width of one layer. The parameter, At, is
defined below. By applying Eq. [10] to all boxes and
then replacing Fa(J,K) by Fa(J,K) + AFA(J,K), a
new array of concentrations is generated which repre-
sents the effects of diffusion for a time interval At. The
concentrations of species B and X are similarly
treated. For this technique to converge, DM, must
have a value less than 0.5 (13). In most of these cal-
culations, DM, was taken to be 0.45.

Convection effects—The parameter, At, is the real
time length of one iteration. Thus

At = ty/L [12]

where t; is some experimentally known time or time
dimensioned variable, and L is the number of itera-
tions used to simulate that time. To evaluate the ap-
propriate form of tx, consider the equation for the
velocity of convective fluid flow in the direction nor-
mal to the electrode. In the region near the electrode,
this is given by (15)

vx = —0.51 &3/2 y~1/2 X2 [13]

where w is the rotation rate in radians/second, » is
the kinematic viscosity in square centimeters per sec-
ond, and X is the distance from the electrode surface.
The velocity in the X direction may be represented
by the derivative, dX/dt. Thus

dX/dt = —0.51 «3/2 = 1/2 X2 [14]

Solving the above, for X and evaluating between t;
and t;, one obtains

1 1
e = 051 WY 12 (b — t 15
X X w32y (te 1) [15]

Ci1RODE

If we let t; — t; — af, then X; and X represent the
distance of a particular solution volume from the eleg-
trode surface at the beginning and end of the time
interval, at. In terms of the layer rumber, J, the dis-
tance from the elecirode surface to the center of any

box is given by (J — 1) (aX]. Let
¥r=Jd_1 [16]
and
XNy =XJ(axD [17]
then X, is the pesition in the old array of the solution
volume which will be in the center of the Jth box at
the end of the tirne interval, At It is convenient to let
X, = (XJJ)aX [18)

where XJJ is a nonintegral distance from the electrode
expressed in terms of numbers of boxes.
We can now rewrite Eq. [15] as

1 1
—_— — — = —0.51 %2, 12 AX At [19]
XJJ XJ

or
XJJ = XJ/[1 — (XJ) (0.51 «¥/2~1/2 AXAt)] [20]

The product (0.51 «3/2 ,—1/2 AXAt) is dimensionless
and is designated Vnaur, that is

Vnaur = 0.51 o3/2 1/ AX At [21]

From Ea. 111
AX = (DaAt/DMa) 172 [22]
Thus -

Vnaur = 0.51 o%/2 DAl/2 y—1/2DM 5~ 1/2At3/2

Using Eq. [12]
Viaur = 0.51 w3/2 D172 ,~1/2 DMpo—12 4,312 L—3/2  [24]

Letting
tx = w—141/3 Dy~ 1/3 (0.51) —2/3

Vnaur = DM—1/2 [ 372 [261
then
XJJ = XJ/[1 — (XJ) (VNauT)] [27]

Note that the above substitutions render the calcu-
lation of the effects of convection not only dimension-
less, but also strictly in terms of simulation variables.
By replacing the concentrations now at the center of
each box with the concentrations at the distance cal-
culated from Eq. [27], a new array representing the
effects of diffusion and convection normal to the elec-
trode for a time, At, is generated. )

In a similar manner, the effects of convection in the
radial direction can be calculated. Beginning with the
equation for fluid velocity in the radial direction near
the electrode (15)

vr = —0.51 w3/2 ,—1/2 XR [28]

where R is the distance from the axis of rotation, one
obtains
dR/dt = —0.51 w3/2 ,—-1/3 XR [29]

Solving Eq. [29] one obtains
In(Ry) — In(Ry) = —0.51 w372 p~1/2 X (ty — t1) [30]

As before, R, and R; are the positions of a solution
volume at times t; and t;. Rearranging and substitut-
ing for X and (2 — t;)

In (Ri/Rg) = 0.51 w372 ,— 12 XJ AX At [31]

If we let
R; = RK(ar) [32]
R; = RKK(Ar) [33]

and

and combine terms, we get

In(RK/RKK) = (Vnaur) (XJ)
and finally
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RKK = RK exp [— (Vnaur) (XJ)] [35]
where
RK =K 4 IR1 — 2 [(36]

and is the radial distance of the solution volume in
the center of the Kth box from the axis of rotation.
RKK is the present position of the solution volume
which will be at RK at the end of the At interval
Equation [35] allows the generation of an array of
concentrations which represents the effects of diffusion
and both normal and radial convection for a time, At.

Kinetic effects—For a first order disappearance of
species B from the J, Kth box, one can write the rate
law in the form

ACp (J,K) /At = —kCp(J,K) [37]

Normalizing the concentrations by dividing both sides
of the equation by C°,, and remembering that Fg(J,K)
== Cp(J,K)/C°4s, we have

AFgp(J,K) = —kat F(J,K) [38]
or substituting for At

AFR(J,K) = —[kw—1,~1/3D,—1/3(0.51) -2/3]Fg (J,K) /L
(39]

The dimensionless collection of terms in brackets in
Eq. [39] is called XKT, so that

XKT = kw—1,1/3 DA—1/3 (0.51) —2/3 [40]

This is the dimensionless rate parameter which is
used in the calculations. Rewriting Eq. [39], we get

AFg(J,K) = —XKT[Fs(J,K)]1/L [41]

Similarly, the expression for the appearance of species
X is
AFx(JK) = XKT[Fg(J,K)]/L = —AFg(J,K) [42]

By replacing Fg (J,K) with Fg(J,K) + AFg(J,K) and
Fx(J,K) with Fx(J,K) + AFx(J,K), an array of con-
centrations which represents the concentration profile
one would expect to observe under these conditions
after At seconds is generated.

Calculation of current.—The fractional flux of a spe-

cies, Z, moving from a J = 2 box into a J = 1 box is
given by -

FFz(K) = DMz[Fz(2,K) — Fz(1,K)] [43]

The contribution to the current from a given box, K,
can be expressed as

i1(K) = [FFz(K)1(Cra) [A(K)AX](nF)/at [44]

where A (K) is the area of the Kth box (thus A (K)AX
is the volume of that box). Rearranging and substitut-
ing for AX and At we get

i(K)/nFCoy = FFz(K) A(K) Dz1/2 DM;—1/2 L1/2 ), —1/2
{45]
Substituting for tx and rearranging we have

1(K)/(0.51)1/3 nFCos D72/3 1/2 y—1/8
= FFz(K) A(K) LY2 DM,~1/2 [46]

If we divide both sides of Eq. [46] by the area of the
disk electrode, Ap, we have

1(K)/(0.51)1/3 nFApCo,D2/3 /2 ,—1/6
= FFz(K)1L}Y2DMZ-1/2 A(K)/Ap [47]

Both sides of Eq. [47] are now dimensionless and the
simulation variables are all on one side of the equa-
tion.

Equation [47] can be used to calculate the current at
the disk electrode. That is

‘id/ (0.51) 1/3 nFADCoADAZI:S wl/2 ,,-1/6
. = FFA(1) L1/2DM,—1/2 [48]

In the case of a potential step to the limiting current

ELECTROCHEMICAL SCIENCE

February 1870

plateau, since Fa(1,1) = 0.0, the fractional flux be
comes
FFA(1) = DM F4(2,1) [49]

The dimensionless parameters on each side of Eq. [48]
are called ZD. Thus, in terms of experimental vari-
ables

ZD = ig/(0.51)1/3 nFApCoaD2/3 wi/2,~1/6  [50]

while in terms of the simulation
ZD = DM\YV/2 Fp(2,1) L1/2 [51]

Similarly, the current at the ring electrode can be
calculated. Using Eq. [47]

i,/(0.51)1/3 nFApCopsDg2/3 w1/2 y—1/6

= 1L12DMg—1/2 = FFg(K)A(K)/Ap [52]
Kr

where the summation is over all radial boxes, K, cor-
responding to the ring electrode. ,

The dimensionless parameter on each side of Eq.
[52] are called ZR. Thus, in terms of experimental
variables

ZR = i,/(0.51)1/3 nFApCosDp2/3 w1/2 ,—1/6  [53]
while in terms of simulation variables

ZR = LV2DMg—V/2 = FFg(K) A(K)/Ap [54]
Kr

If the potential at the ring is such that all B reaching
the ring is instantly converted into A, then Fg(1,Kr)
=0.0 and Eq. [43] becomes

FFg(Kr) = DMgpFg(2,Kr) [55]
Therefore, Eq. [54] becomes
ZR = Lv2 DMgl/2 3 Fg(2,K) A(K)/Ap [56]

Kr
Note that
ZR/ZD = (i,/ia) (Da/Dg)1/2 [57]
The quotient i,/ig4 is the collection efficiency, N. Thus
ZR/ZD = N(Da/Dg)1/2 [58]

Though it is not necessary to do so, we will assume
that Dy = Dg, and thus

ZR/ZD = N (591

Redefinition of boundary conditions.—At this point,
the first iteration in the calculation is completed. It is
now necessary to modify the boundary conditions at
the disk and ring electrodes as follows.

At the disk
Fa'(1,1) = 0.0 [60]

Fg'(1,1) = Fp(L,1) 4+ DMa[FA(2,1)]
—DM3[Fg(1,1) — Fp(2,1)] [61]

Fx’(1,1) = Fx(1,1) — DMx[Fx(1,1) — Fx(2,1)] [62]

Equation [61] states that the new fractional concen-
tration of B at the disk, Fg’'(1,1), is the old fractional
concentration of B at the disk, Fp(l,1), plus the
amount of A which diffused into the disk and is
transformed (with passage of current) into B, less the
B which diffuses out.

Equation [62] states that the new concentration of
X at the disk, Fx’(1,1), is given by the old concentra-
tion less the X which diffuses out.

The new boundary conditions at the ring electrode
are

Fa'(1,Kr) = Fa(1,Kr) + DMg[FB(2,KR)]
—DMa(Fa(1,Kr) — Fa(2,Kr)] [63]

Fp’(1,Kg) =00 [64]
Fx'(1,Kg) = Fx(1,Kg) — DMx[Fx(1,Kgr) — Fx(Z,KEzG)s]]



At this point the calculation of the effects of diffu-
sion, convection and kinetics are repeated, then cur-
rents are calculated at t = 2at, and the process is
continued until steady state is reached.

Boundary conditions for constant current.—It is also
of interest to simulate the application of a constant
current step to the disk electrode. This is done simply
by modifying the disk electrode boundary condition
in the above simulation. The boundary conditions for
constant current at the disk are given by

Fa'(1,1) = Fa(1,1) — FLUX
— DMa[Fa(1,1) — Fa(2,1)] [66]

Fg’'(1,1) = Fg(1,1) 4 FLUX
— DMg[Fg(1,1) — Fp(2,1)] [67]

Fx'(1,1) = Fx(1,1) — DMx[Fx(1,1) — Fx(2,1)] [68]

where Fy’, Fg’, and F¢’ are the new fractional concen-
trations of species A, B, and C; Fa, Fp, and F¢ are the
old fractional concentrations. FLUX is the amount of
A transformed into B by electrolysis during each At
interval and is given by

FLUX = (icc/ir) (0.776) (DMa/L)1/2 [69]

where i.. is the applied constant current and i, is the
limiting current for species A.

Results

A Fortran program based on the methods of the
previous section was written; a listing and discussion
of this program is available (16). Calculations for a
number of different electrode geometries were carried
out on a Control Data Corporation Model 6600 com-
puter and processing times quoted refer to compilation
and execution times on this.

Effect of number of iterations.—From Eq. [12] and
[22] it is clear that the number of iterations, L, deter-
mines the magnitude of Ax and At; the larger L, the
closer the simulation will approximate the physical
system. A simple test of the simulation is to compare
the computed steady state current at the disk with that
predicted by the Levich equation (15)

is.s. = 0.62 nFACoD?2/3,1/2,—1/6 [70]

When L = 50, the simulated steady-state current at
the disk electrode is only 96.5% of the Levich equation
limiting current. When L = 1000, however, the simu-
lated disk current is 99.5% of the theoretical current.
Similar results are obtained for the simulated collec-
tion efficiency. A simulation with L = 50 yields a col-
lection efficiency 9% higher than that predicted by
Albery and Bruckenstein (3) for an electrode with
IR1 = 83, IR2 = 94, and IR3 = 159. When L == 1000,
the simulated collection efficiency agrees to within
0.5% with the theoretical value.

Unfortunately, the computation time required to
attain the steady state when L = 1000 is prohibitively
long, requiring about 25 min of computer time. It was
found, however, that identical results could be ob-
tained from a simulation with L = 50, which requires
only 25 sec of computer time, if a slight modification
is made in the calculation of the effects of convection.

If Eq. [27] and [35] are modified as follows

XJJ = XJ/[1.0 — (1.11 - XJ - Vyaur)] [71]
RKK = RK exp [— 1.03(XJ) (Vyaut)] [72]

the results obtained with L = 50 are in close agree-
ment with those using L = 1000 and the unmodified
convection equations. The introduction of adjustable
parameters into digital simulations involving convec-
tion has been successful in other cases (13). Note that
the factors in Eq. [71] and [72] are valid only for
L = 50 and DMy = 0.45. There will be slightly differ-
ent factors for different values of these parameters.

0.0 0.5 1o 2.0 25

wt (lb:e)‘(us-)"

Fig. 2. Simulated disk current transient for potential step at disk:
(© theoretical work of Bruckenstein and Prager (17); [] theoretical
work of Siver (18).

Figure 2 shows the simulated disk current transient.
The solid line is actually two curves, one generated
using L = 1000 and the other using L. = 50 and the
correction factors. For all practical purposes, they are
identical. The simulated curve is also compared with
the theoretical and experimental work of Prager and
Bruckenstein (17) and the approximate treatment of
Siver (18). Both are in good agreement with the
simulation.

Figure 3 shows the concentration profile of species A
at steady state as X} function of distance from the
electrode surface in the normal direction. Curves b
and c are the results of simulations using L = 1000,
and L = 50 and the correction factors, respectively.
On this scale, they are indistinguishable. Curve a is
the theoretical concentration profile given by Riddiford
(19). The agreement is quite satisfactory and indicates
that the correction factors do not adversely affect the
concentration profile.

Collection efficiencies.—Table I presents the simu-
lated collection efficiencies in the absence of kinetics
for a number of different electrode geometries. In
these calculations L = 50 and the correction factors
given in Eq. [71] and [72] were used. In all cases the
simulated collection efficiencies are in excellent agree-
ment with the theoretical collection efficiencies of
Albery and Bruckenstein (3). Identical steady-state
collection efficiencies are also predicted when the
boundary conditions at the disk electrode correspond
to a constant current step rather than a potential step.
This is as would be expected. Furthermore, the steady-
state collection efficiencies are unaffected by the mag-

X/%

Fig. 3. Concentration profile of species at the disk: a, theoretical
curve by Riddiford (19); b, simulated curve, L = 1000; c, simu-
lated curve, L = 50, correction Ffactors used. & = 1.805
D1/3y1/64,—1/2,
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Table |. Simulated collection efficiencies for different electrode
geometries

Collection efficiencies

Ta/Ty Ta/T1 Simulated” Calculated?
1.05 1.261 0.339 0.340
1.05 1.361 0.408 0.409
1.05 1.472 0.463 0.464
1.07 1.161 0.209 0.210
1.07 1.271 0.321 0.323
1.07 1.371 0.391 0.391
1.07 1.483 0.449 0.449
1.09 1.201 0.226 0.226
1.09 1.301 0,320 0.321
1.09 1.521 (0.449 0.447
L = 50, correction factors used. Computation time about 20 sec

per calculation.
" Calculated from tables in (3},

nitude of the current step, provided the current is
smaller than the limiting current.

Ring fransients —From an approximate treatment of

ring current transients (RCT), Albery (9) suggested
that these could be employed to study fast homogene-
ous reactions of species generated at the disk electrode.
Bruckenstein and Feldman (20) introduced the con-
cept of the transit time from disk to ring electrode
and suggested its application to the determination of
rate constants of homogeneous reactions. Bruckenstein
and Napp (21) have also shown that the RCT can be
used to determine the amount of adsorption of elec-
trogenerated products.

Figure 4 shows the RCT obtained when either a
potential step or a current step is applied to the disk
electrode and the ring electrode is held at a potential
where all product reaching it is electrolyzed. The com-
puted results for the RCT are identical for L = 1000
or for L = 50 and the modified convection equations.

Note that the current at the ring rises more rapidly
when a potential step is applied. This is caused by the
large instantaneous current which results at the disk
when the potential is stepped (Fig. 2). The RCT,
normalized by the steady-state ring current, due to a
current step is independent at the magnitude of the
current step.

We can compare the simulated RCT’s with transit
times predicted by Bruckenstein and Feldman (20).
The appropriate equation given by them for the transit
time (the time interval between the potential step at
the disk and the appearance of current at the ring) in
the absence of complications is

wt’D1/3,=1/3(0.51) 22 = Bllog(ra/11) ]2/3 [73]

where o is in radians/sec, t* is the transit time, and
ry and ry are the radii of the disk and inner edge of
the ring, respectively. Bruckenstein and Feldman (20)
take B = 2.87, while a slightly different method of
carrying out the integration in the derivation yields
B = 2.28, Figure 5 shows the simulated RCT’s for a
potential step at the disk for electrodes of different
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Fig. 4. Simulated ring current transients: a, potential step at the
disk; b, current step at the disk; L = 50, correction factors used.
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Fig. 5. Simulated transit times: a, IRl = 2000, /R2Z = 2040,
IR3 = 2080; b, IR1 = 100, IR2 = 105, IR3 = 147; ¢, IR1 = 100,
IR2 — 107, IR3 = 148; d, IR1 = 100, IR2 = 109, IR3 = 152;
e, IR1 = 83, IR2 = 94, IR3 = 159; L = 50, correction factors
used, The points correspond to transit times calculated using Eq.
[73] with B = 2.28 (open points) and 2.87 (solid peints).

geometries. Also shown are the transit times calcu-
lated from Eq. [73] for B-values of 2.28 and 2.87. A
useful definition of the transit time, corresponding to
Eq. [73] with B = 2.28, is that time at which the
current is approximately 2% of the steady-state ring
current. Taking the transit time at a given fraction
of the steady-state current seems preferable for many
electrodes to methods involving extrapolations of the
rising current region of the RCT.

We can also compare our results with those of Albery
(9) who treated the RCT for the current step condi-
tion. For a thin-ring thin-gap electrode, he obtained
two approximate equations, one which is valid at long
times and the other which is more valid at short times.
Figure 6 shows the simulated RCT for the current
step condition at a fairly thin-ring thin-gap electrode
(IR1 = 2000, IR2 = 2040, IR3 = 2080). Also plotted
are points obtained from Albery’s equations, The
agreement is acceptable and points out the limits
within which the approximate equations are valid.
Unfortunately, these equations cannot be employed
for most practical electrodes which are not of the re-
quired thin-ring thin-gap configuration.

Conclusion

The digital simulation technique has been shown
to give theoretical results for transient and steady
state behavior which are in good agreement with pre-
vious theoretical treatments and experiments. The
digital simulation approach has the advantage of being
directly applicable to situations involving more com-
plex boundary conditions and coupled first and second
order homogeneous chemical reactions. Results of dig-
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Fig. 6. Simulated current transient for thin ring-thin gap elec-
trode with current step at the disk: /R1 = 2000, /R2 = 2040, IR3
== 2080; L = 50, correction factors used from Albery’s Eq. [3.4]
(9) using pre-exponential factors. () 0.94; [J 0.81.
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