We report a simple combinatorial approach of preparing mimics for enzymes with rapid screening as electrocatalysts for oxygen reduction by scanning electrochemical microscopy (SECM). Poly-L-histidine (poly-his) was used as a matrix and ligand to complex Cu^{2+} to mimic the active sites of oxygen reductases. An array of Cu^{2+}-poly-his spots with different compositions was deposited on a glassy carbon (GC) substrate by the dispensing technique described previously, and their electrocatalytic activity for oxygen reduction was evaluated by SECM.

Electrodes modified with polymer-based films containing charge carriers (e.g., redox mediators attached to a polymer backbone) and enzymes (e.g., laccase) dispersed into a matrix permeable to reactants and electrolyte show excellent activity for oxygen reduction. Enzyme-modified electrodes have been extensively explored, and enzymes are used in many chemical processes. However, although they show outstanding activity and high specificity and selectivity, they have the drawback that they must work at near physiological conditions and are often expensive and unstable during extended usage. These limitations have led to extensive efforts to synthesize enzyme mimetics, largely based on synthesizing compounds with a center that is like the three-dimensional catalytic active site. In most enzymes, the spatial arrangement of amino acids and the prosthetic group encompassing the active site determines the specificity of the enzyme for a reaction. The active sites of redox enzymes often contain metal ions, such as Cu^{2+}, Fe^{3+}, and Co^{3+}, and there are numerous reports of the synthesis of artificial catalysts, such as for oxygen reduction. The active site of laccase contains four Cu ions coordinated with histidine and other amino acids. An alternative to the complex synthesis that often characterizes biomimetic chemistry is a rather simple, pseudo-evolutionary approach based on the preparation of small test samples of different composition by an automated dispensing technique and the rapid screening of candidate materials, such as by SECM. We use copper ion complexes with poly-his as a proof-of-the-concept test system.

To gain a better understanding of the Cu-poly-his complexes, we also studied the electrochemical (EC) behavior of the Cu^{2+}-poly-his complex in both solution and as the complex-coated thin film on GC electrodes in aqueous solutions at various pHs. No previous investigations reported electrocatalytic properties of Cu^{2+}-poly-his for oxygen reduction, although a number of studies discussed the structures and binding stability of copper poly-his complexes.

Solution phase electrochemical studies, discussed in more detail in the Supporting Information, were carried out for mixtures of Cu^{2+} and poly-his in deaerated 0.5 M Na_2SO_4 at pH 5.8, with or without O_2 at a GC electrode. Cyclic voltammograms (CVs) (Figure S1, see Supporting Information) show the O_2 reduction peak at ~−0.30 V (all potentials vs Ag/AgCl). In 1 mM Cu^{2+} solution, CV showed the reduction of Cu^{2+} to Cu^{0} with a cathodic peak potential at −0.1 V with stripping of the Cu^0 on the reverse scan and with an anodic peak potential of 0.07 V. In the presence of poly-his at pH 4.5 (Figure S2, see Supporting Information), the magnitude of the Cu^{2+} reduction current decreased. When the concentration of histidine residues was 10 times that of Cu^{2+}, the stripping reoxidation peak disappeared in the reverse scan, and a solution phase oxidation peak was observed at 0.41 V. In an O_2-saturated solution, the oxygen reduction commenced at −0.05 V in the solution containing Cu^{2+}-poly-his complex; this is slightly more positive than that in the absence of complex (~−0.13 V).

The electrocatalysis of O_2 reduction at Cu^{2+}-poly-his-modified GC electrodes compared with bare GC electrodes is shown in Figure 1. Curves 3 and 4 show the CVs at a GC electrode coated with Cu^{2+}-poly-his in PBS solution (pH 7) in the absence or presence of O_2, respectively. The reduction of Cu^{2+}-poly-his-coated GC electrodes started at ~0.06 V in the absence of O_2. O_2 reduction on Cu^{2+}-poly-his-modified GC electrodes (curve 4) started at ~−0.07 V, which was more positive than that on the bare electrode (~−0.13 V, curve 2). At a bias of ~0.3 V, the current in the presence of O_2 at a Cu^{2+}-poly-his-modified GC electrode was 2.3-fold higher than that at bare GC electrode. At a current density of ~40 μA/cm^2, the O_2 reduction on the Cu^{2+}-poly-his-modified GC electrode occurred at a potential ~0.13 V more positive than that on the bare electrode (compare curves 2 and 4 in Figure 1). These results suggest an electrocatalytic process for oxygen reduction at Cu^{2+}-poly-his complex-modified GC electrodes.
However, these complexes still show poor activity. The collection Cu2stoichiometry of the complex and the geometrical arrangement of mole fraction in the range of 0.17 changes of the tip Figure 2. SECM images of Cu 2a piezo-based microarrayer. 15 The tip generation current (i of the complex for oxygen reduction reaction was found at a Cu2 deposition on a GC plate (10 array potential (E) was held at -0.2 V vs Ag/AgCl. The substrate collection potential (E) of the poly-his may play a role in the electrocatalytic process. (a) E = -0.3 V vs Ag/AgCl; (b) E = -0.2 V vs Ag/AgCl. Tip raster rate = 100 μm/s.

Arrays of Cu2+-poly-his complex spots of various compositions were deposited on a GC plate (10 × 10 mm, Alfa) by using a piezo-based microarrayer. 15 The tip generation—substrate collection mode of SECM was used to image activity of the arrays 15,16 because of its high sensitivity (pA) and relative insensitivity to changes of the tip—substrate distance. 16 SECM images of the activity for oxygen reduction of Cu2+-poly-his spots were obtained in 0.2 M phosphate buffer at pH 7 (Figure 2). A 25 μm diameter Pt tip positioned 40 μm away from the GC surface was scanned in the xy plane (parallel to spot rows) at 100 μm/s, while O2 was electrogenerated from H2O at a constant tip current. The substrate array potential (Esubstrate) was held at -0.2 and -0.3 V. The substrate current (iS), measured as a function of the tip position to produce the SECm image, was higher when the O2-generating tip scanned over a more active spot. Thus, the magnitude of the electrocatalytic activity of any of the spots is reflected in the magnitude of iS.

For the arrays shown in Figure 2, O2 electroreduction was seen for mole fractions of Cu2+ above 0.17. Spots containing poly-his alone washed away before imaging, however, the Cu2+-poly-his spots adhered well enough for several imaging scans. The spots containing only Cu2+ also catalyzed oxygen reduction. This suggests that Cu0 was formed during the heat treatment for evaporation of glycerol. For the arrays studied, the highest efficiency and stability of the complex for oxygen reduction reaction was found at a Cu2+ mole fraction in the range of 0.17—0.35, suggesting that the stoichiometry of the complex and the geometrical arrangement of Cu2+ in the poly-his may play a role in the electrocatalytic process. However, these complexes still show poor activity. The collection efficiency of the complexes for oxygen is still low; only less than 20% of oxygen produced by the tip was reduced on an active spot. More than 20 different arrays were prepared and scanned, and 85% of these showed catalytic activity (see Supporting Information.)

While the results here represent proof of principle, the performance of the best material is still inferior to that of laccase. However, these represent only preliminary studies, and different polypeptides and their mixtures and different preparation conditions will be investigated.

Acknowledgment. This work was supported by grants from the National Science Foundation (CHE 0451494), and Y.C.W. thanks the National Science Council of the Republic of China (NSC 93-2917-I-006-015) for a graduate student fellowship.

Supporting Information Available: Additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(14) Detailed procedure for the preparation of the Cu-poly-his-modified glassy carbon electrodes in Supporting Information.
(15) Experimental details in Supporting Information. Briefly, two different solutions containing 10 mM poly-L-histidine and 10 mM Cu(NO3)2·3H2O, respectively, were first prepared: 5% v/v glycerol was added to each solution to avoid premature evaporation of the spots. The dispenser was filled with poly-L-histidine solution (3 μL), which was dispersed in a programmed number of drops at each site. Each composition was prepared repeatedly to test the reproducibility. Thus, the arrays contained 5 rows and 5 columns of spots. After dispensing the poly-L-histidine spots, the dispenser was emptied, thoroughly rinsed first with ethanol and then with Milli-Q water, and refilled with 3 μL of Cu2+ solution. The plotter positioned the dispenser exactly over the previously prepared poly-L-histidine spots, and a number of drops of Cu2+ solution dispersed with the total sum of drops were always equal to 12. The spots of the array were then agitated for 5 min in a Vertex Genie 2 agitator (Fisher). The array was heated in the oven at 100 °C overnight to dry the spots. Spots were 150—300 μm diameter and spaced 400 μm apart. The area of the 5 × 5 array was 2.5 mm × 2.5 mm, and 50 min was required to scan the complete array at a tip raster rate of 100 μm/s.
J. AM. CHEM. SOC. • VOL. 127, NO. 50, 2005 17577