SUPPORTING INFORMATION

Generation and Detection of Single Metal Nanoparticles Using Scanning Electrochemical Microscopy Techniques

Ran Tel-Vered and Allen J. Bard^{*}

Figure S1: Cyclic voltammetry for macroscopic C rod and Pt disk electrodes in H^+/H_2 (solid lines) and Fe^{3+}/Fe^{2+} (dotted lines) mediators. The electrolytes used are 10 mM H₂SO₄ in 0.1 M K₂SO₄ and 5 mM Fe₂(SO₄)₃ in 1 M H₂SO₄, respectively. The limiting reduction waves are for H₂O and H₂ reduction, respectively.

Figure S2: SEM images of CFE tips following immersion of 15 min in Pt colloidal solution. (A) Non modified CFE; (B) CFE after condensation reaction in the presence of 1 mM 4aminopyridine and 200 mM aniline; (C) CFE after condensation reaction in the presence of 1 mM 4-aminopyridine without aniline.

Figure S3: Schematic presentation of the nanoparticle collection technique showing a CFE tip modified with a surface layer containing a high ratio of nanoparticle blocking to binding molecules and positioned inside a colloidal Pt solution using SECM control.

Figure S4: Cyclic voltammetry of a bare CFE tip (dashed line) and of a CFE tip containing a chemisorbed Pt MNP (solid line). The modified tip was treated with 1 mM 4-aminopyridine and 200 mM aniline and immersed at 350 nm below the surface level of a Pt colloidal suspension. For both tips voltammetry was carried out in $0.2 \text{ M H}_2\text{SO}_4$ and the sweep direction was from positive to negative at a rate of 100 mV s⁻¹.