Electrochemical Behavior and Electrogenerated Chemiluminescence of Star-Shaped D–A Compounds with a 1,3,5-Triazine Core and Substituted Fluorene Arms

Khalid M. Omer,† Sung-Yu Ku,†,‡ Yu-Chen Chen,‡ Ken-Tsung Wong,*‡ and Allen J. Bard*,†

Center for Electrochemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, National Taiwan University, 106 Taipei, Taiwan

Received May 14, 2010; E-mail: ajbard@mail.utexas.edu; kenwong@ntu.edu.tw

Abstract: We report the synthesis, electrochemistry, and electrogenerated chemiluminescence of a series of star-shaped donor–acceptor (D–A) molecules. The star-shaped molecules consist of an electron-deficient 1,3,5-triazine core with three fluorene arms substituted with diarylamino (TAM1–TAM3) or carbazolyl (TAM4) electron donors. Cyclic voltammetry of TAM1–TAM3 shows that the reduction consists of one wave of single electron transfer to the core, while the oxidation exhibits a single peak of three sequential electron-transfer processes, with the formation of a trication. The carbazole-containing molecule TAM4 after oxidation undergoes a subsequent rapid chemical reaction to produce a dimer (via the overall coupling of two radical cations with the loss of two protons). The dimer electrooxidizes more easily than the monomer of TAM4. With continuous cycling on the oxidation side, a conductive polymer film is formed on the surface of the working electrode. Because of the presence of the acceptor (triazine) center and strong donors in the arms (diarylamine or carbazole), TAM1–TAM3 exhibit large solvatochromic effects with emissions ranging from deep blue (428 nm) to orange-red (575 nm) depending on the solvent polarity. These star-shaped molecules show high PL quantum yields of 0.70–0.81. The electrogenerated chemiluminescence (ECL) of TAM1–TAM3 in nonaqueous solutions showed strong ECL that could be seen with the naked eye in a well-lit room. Because the enthalpy of annihilation is higher than the energy required for formation of the singlet excited state, the ECL emission is believed to be generated via S-route annihilation. However, TAM4 shows weak annihilation ECL because of the production of polymer film on the electrode surface during oxidation cycles. However, by limiting the potential region only to the reduction side and using benzoyl peroxide (BPO) as a coreactant, strong ECL of TAM4 can be obtained.

Introduction

In the present work, we report the synthesis, electrochemical, and photochemical characterization and electrochemiluminescence of star-shaped molecules based on a 1,3,5-triazine core with three arms built with 9,9-diethylfluorene end-capped with diarylamine or carbazole, as shown in Figure 1. Star-shaped donor–π-acceptor (D–A) systems are considered promising candidates for different applications, such as organic light-emitting devices,1 photovoltaic applications,2 and organic thin film transistors.3

Recently, we reported blue electrogenerated chemiluminescence (ECL) of star-shaped molecules based on truxene–

1 University of Texas at Austin.
2 National Taiwan University.

Figure 1. Star-shaped 1,3,5-triazine derivatives.

The truxene−oligofluorene compounds show C3 symmetry; however, in the hydrocarbon structure, there were no strong D and A groups to stabilize the hole or the electron, i.e., to stabilize the radical cation and anion. Therefore, we designed and synthesized a C3 symmetry system by introducing strong donor groups (diarylamine for TAM1–TAM3 or car-
Dimerization of Triphenylamine chemical properties. Due to their electron deficiency (i.e., electron transfer between a cation radical and an anion radical, a fundamental requirement of generating efficient ECL. and reduction occurs reversibly. Such radical anion stability is by the following two proposed mechanisms. The simplest ECL mechanism is the direct annihilation reaction between the cation radical and the anion radical. The dimer is oxidized more easily than the monomer of TPA.

1,3,5-Triazine molecules show good optical and electrochemical properties. Due to their electron deficiency (i.e., triazine is a typical acceptor unit), radical anions are stabilized, and reduction occurs reversibly. Such radical anion stability is a result, they are potential solvent polarity probes. Electrogenerated chemiluminescence (ECL) arises from the electron transfer between a cation radical and an anion radical. The simplest ECL mechanism is the direct annihilation reaction between the cation radical and the anion radical as follows:

\[A^- + e^- \rightarrow A^{*+} \] (radical cation formation) (1)

\[A + e^- \rightarrow A^- \] (radical anion formation) (2)

\[A^{*+} + A^- \rightarrow \text{^1A}^* + A \] (singlet state formation by direct annihilation) (3)

\[\text{^1A}^* \rightarrow A + h\nu \] (ECL emission) (4)

However, asymmetric annihilation, for example between a diatomic and monocation may occur to produce the excited state by the following two proposed mechanisms.

\[\text{A}^- \rightarrow \text{A}^{*+} + \text{A}^- + \text{h} \nu \] (5)

\[\text{A}^{*+} + \text{A}^- \rightarrow (\text{A}^{*+} + \text{A}^-) \rightarrow (\text{A}^{*} + \text{BPO}) \rightarrow (\text{A}^{*} + \text{BPO}) \rightarrow \text{A} + \text{BPO}^- \] (6)

Mechanism I:

\[\text{A}^- \rightarrow \text{A}^{*+} + \text{A}^- + \text{h} \nu \] (7)

\[\text{A}^{*+} + \text{A}^- + \text{h} \nu \] (8)

Mechanism II:

Another ECL pathway, often used when lack of stability of one radical ion or the limitation of the potential window to prevent its generation, involves adding a coreactant, which can produce either a strong reducing agent or strong oxidizing agent depending on the nature of the coreactant. For example, benzyol peroxide (BPO) is one of the common coreactants used if the radical cation is not stable. Upon reduction, BPO forms a strong oxidizing agent (\(E^* = +1.5 \, \text{V} \)), which can directly react with an anion to produce an excited state.

\[\text{^1A}^* \rightarrow \text{A} + \text{h} \nu \] (9)

D–A molecules are sensitive to solvent polarity, due to the intramolecular charge-transfer process that occurs upon excitation. As a result, they are potential solvent polarity probes.

In this paper, we describe the synthesis of TAM1–TAM4. Electrochemistry and spectroscopy are thoroughly studied. TAM1–TAM3 show bright ECL, which could be seen with the naked eye under ambient light.

Experimental Section

Synthesis. TAM1–TAM4 consist of a 1,3,5-triazine core and three arms of 9,9-diethylfluorene end-capped with diarylamine or carbazole. The syntheses of TAM1–TAM4 start from 2-bromo-9,9-diethylfluorene to give 2-cyan-9,9-diethylfluorene, followed by an acid-promoted triazene formation and C–N bond cross-coupling reaction. This synthetic route was shown in Scheme 2. Treatment of 2-bromo-9,9-diethylfluorene with 2 equiv of CuCN

![Scheme 1. Electrooxidation of Triphenylamine and Following Dimerization of Triphenylamine](image)
Scheme 2. Synthetic Pathway of TAM Compounds

in DMF at reflux temperature gave 2-cyano-9,9-diethylfluorene (compound 1) in an isolated yield of 92%. Compound 1 was regioselectively brominated at C-7 with 2 equiv of bromine in the presence of Lewis acid (FeCl3) to give compound 2 in 99%. Then, CF3SO3H-promoted cyclization of compound 2 in dichloromethane generated 1,3,5-triazine T-Br in an isolated yield of 81%. Finally, Pd-catalyzed C–N bond formation of T-Br with a different diimide using NaOBU as base at 110 °C afforded TAM1–TAM3. The same procedure was not feasible for the C–N bond coupling with carbazole substitution. K2CO3 was employed as base, instead of NaOBU. The mixture was stirred at 160 °C in o-xylene in the presence of Pd(OAc)2 and PBU3 generated the TAM4 in a moderate yield.

Compound 2. Compound 1 (9.8 g, 40 mmol) was dissolved in chloroform (20 mL), and the mixture was lined with aluminum foil to keep away from light. Then bromine (4 mL, 80 mmol) was added slowly into the flask, and the reaction mixture was stirred at the reflux temperature for 12 h. The mixture was extracted with CHCl3/water. The organic solution was collected, dried with MgSO4, and concentrated with a rotary evaporator. The product was purified by vacuum system to get compound 2 as a brown solid (13.0 g, 99%). mp 95–96 °C; IR (KBr) ν 2979, 2230, 1607, 1448, 824, 519 cm−1; 1H NMR (CDCl3, 400 MHz) δ 7.74 (d, J = 8.0 Hz, 1H), 7.66–7.59 (m, 3H), 7.53–7.50 (m, 2H), 2.05–1.99 (m, 4H) 0.29 (t, J = 7.4 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ 152.5, 150.0, 144.7, 138.3, 131.3, 130.4, 126.4, 126.3, 123.0, 121.9, 121.1, 119.4, 110.3, 56.8, 32.5, 8.4; MS (m/z, FAB+): 326 (52), 307 (18), 217 (24), 154 (100), 136 (77); HRMS (M + H)+, FAB+): Calcd C90H79N6Br8 1243.6366, found 1243.6379.

TBr. Compound 2 (12.8 g, 40 mmol) and trifluoromethanesulfonic acid (3.6 mL, 40 mmol) were dissolved in dichloromethane (40 mL). The reaction mixture was stirred at 0 °C for 1 h and then stirred at room temperature for 24 h. The mixture was extracted with CHCl3/water. The organic solution was collected and dried with MgSO4, and the organic solvents were removed with a rotary evaporator. The product was purified by recrystallization with methanol to get T-Br as a white solid: (10.4 g, 81%), mp 214 °C (DSC); IR (KBr) ν 2979, 1615, 1593, 1249, 811, 751 cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.86 (dd, J = 8.0, 1.6 Hz, 3H), 8.74 (d, J = 0.8 Hz, 3H), 7.91 (d, J = 8.0 Hz, 3H), 7.70 (d, J = 7.6 Hz, 3H), 7.56–7.53 (m, 6H), 7.29–7.24 (m, 6H), 2.26–2.10 (m, 6H), 0.435 (t, J = 7.4 Hz, 18H); 13C NMR (CDCl3, 100 MHz) δ 171.5, 153.1, 149.8, 144.8, 143.6, 139.6, 135.4, 130.2, 128.5, 126.4, 123.2, 122.2, 121.7, 119.8, 56.7, 32.8, 8.6; MS (m/z, FAB+): 980 (43), 978 (43), 326 (24), 307 (60), 289 (52); HRMS (M + H)+, FAB+): Calcd C54H49N37Br8 980.1436, found 980.1433; calcd C90H79N6Br 978.1456, found 978.1460.

TAM1. Pd(OAc)2 (23 mg, 0.1 mmol), diphenylamine (700 mg, 4 mmol), Na2BuO (460 mg, 6 mmol), and T-Br (980 mg, 1 mmol) were added to a 100 mL two-neck flask with a septum. The flask was evacuated and backfilled with argon. Toluene (20 mL) and PBU3 (8 mL, 0.4 mmol, 0.05 M in toluene) were added. The reaction mixture was heated at 110 °C for 48 h. The reaction mixture was allowed to cool to room temperature, quenched with water (40 mL), and extracted twice with CH2Cl2. The combined organic solution was washed with brine and dried over MgSO4. The product was isolated as yellow crystals with recrystallization from methanol to afford TAM1 (890 mg, 72%). IR (KBr) ν 2959, 1600, 1487, 1368, 811, 745 cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.83 (d, J = 8.0 Hz, 3H), 8.71 (s, 3H), 7.83 (d, J = 8.0 Hz, 3H), 7.69 (d, J = 8.4 Hz, 3H), 7.29 (d, J = 8.0 Hz, 9H), 7.15 (d, J = 8.0 Hz, 15H), 7.10–7.03 (m, 12H), 2.19–2.16 (m, 6H), 2.02–1.99 (m, 6H), 0.46 (t, J = 7.2 Hz, 18H); 13C NMR (CDCl3, 100 MHz) δ 171.4, 152.4, 150.0, 148.0, 147.7, 145.6, 135.5, 134.3, 129.1, 128.4, 124.0, 123.2, 123.0, 122.7, 121.1, 119.0, 56.3, 32.7, 8.8; MS (m/z, FAB+): 1243 (50), 1242 (32), 415 (48), 385 (35), 371 (100); HRMS (M + H)+, FAB+): Calcd C90H79N6 1243.6366, found 1243.6379.
TAM2. A procedure similar to that for TAM1 was applied. A mixture of Pd(OAc)2 (23 mg, 0.1 mmol), biphenyl-4-ylphenylamine (135.1, 134.3, 129.2, 128.6, 128.4, 127.7, 126.7, 124.3), and P(t-Bu3)2 (8 mL, 0.4 mmol, 0.05 M in toluene) gave TAM2 (1.2 g, 82%) as yellow crystals with recrystallization from methanol. IR (KBr) ν 2979, 1607, 1514, 824, 765 cm⁻¹; 1H NMR (CDCl3, 400 MHz) δ 8.86 (dd, J = 9.2, 1.2 Hz, 3H), 8.74 (d, J = 0.8 Hz, 3H), 7.86 (d, J = 8.0 Hz, 3H), 7.72 (d, J = 8.4 Hz, 3H), 7.63–7.61 (m, 6H), 7.53 (d, J = 8.2 Hz, 6H), 7.45 (t, J = 7.6 Hz, 6H).

The reaction mixture was allowed to cool to room temperature, and P(t-Bu3)2 (8 mL, 0.4 mmol, 0.05 M in toluene) was added to the mixture of Pd(OAc)2 (23 mg, 0.1 mmol), naphthalen-2-ylphenylamine (68), 492 (18), 447 (32), and 307 (55); HRMS (M+) C108H90N6 1470.7227, found 1470.7202.

Results and Discussion

Electrochemistry. Cyclic voltammograms for TAM1–TAM4 are shown in Figure 2, and Table 1 summarizes the electrochemical results. All TAM compounds show one reversible reduction peak at (1 to 4) –1.79, –1.78, –1.78, and –1.74 V vs SCE, respectively. The reduction peaks were reversible even at a slow scan rate (50 mVs⁻¹), indicating a long-lived radical anion. The radical anion is reasonably assigned the 1,3,5-triazine (A) core and is relatively insensitive to the substituent groups. The reduction peak potential separation between the forward scan and reverse scan was ∼65 mV at 100 mVs⁻¹, slightly greater than ∼58 mV expected for a one-electron process. The additional 6 mV is attributed to ΔR drop in the highly resistive solvent, so the reduction is believed to be a single electron transfer. Moreover, the same peak splitting was observed for the reference material, ferrocene, which is known to undergo one-electron oxidation. Digital simulation of reduction CV at different scan rates was performed to confirm the reduction mechanism (Supporting Information, Figure S3). The best fit between the experimental and simulated CVs was obtained at 50 mVs⁻¹ to 1 V/s, assuming the reduction mechanism is a simple electron transfer with no coupled homogeneous chemical reactions. The best fit was obtained, after correction for Rct, a heterogeneous electron transfer rate constant, kθ ~ 0.02 cm/s. This relatively slow electron transfer for a simple outer sphere reaction might be caused by a large conformational change in the molecule upon reduction.

Characterization. Electrochemical measurements were performed in a conventional electrochemical cell consisting of a working electrode with a 1 mm indium platinum disk, a Ag wire as a quasireference electrode (referenced verse internal standard, ferrocene/ferrocenium then converting to SCE), and a Pt wire coil as counter electrode. For ECL, the working electrode was a 2 mm platinum disk J-type (bent to face the detector). The working electrode was polished with 1 μm alumina (Buehler, Ltd., IL), and then 0.3 μm and 0.05 μm, followed by sonication in deionized water and acetone for 5 min each. This series of D = A molecules was tested in 1:1 benzene:MeCN, with 0.1 M Bu4NPF6 as a supporting electrolyte. Cyclic voltammograms (CVs) were recorded on a model 660 electrochemical workstation (CH Instruments, Austin, TX).

Electrochemical current and ECL transients were simultaneously recorded using an Autolab electrochemical workstation (Eco Chemie, The Netherlands) coupled with a photomultiplier tube (PMT, Hamamatsu R4220p, Japan) held at –750 V with a high-voltage power supply (Kepco, Flushing, NY). The photocurrent produced at the PMT was transformed into a voltage signal by an electrometer/high resistance system (Keithley, Cleveland, OH) and fed into the external input channel of an analog-to-digital converter (ADC) of the Autolab. The ECL spectra were taken using a liquid nitrogen-cooled charge-coupled device (CCD) camera (Princeton Instrument, SPEC-32), which was cooled to ~100 °C and calibrated with a mercury lamp. Absorption spectra were recorded with a Milton Roy Spectronic 3000 array spectrophotometer. Fluorescence spectra were acquired on a Quanta Master spectrorfluorimeter (Photon Technology International, Binghamham, NJ). Differential scanning calorimetry (DSC) was recorded with JADE DSC (PerkinElmer).

DigiSim 3.03 (Bioanalytical Systems, Inc., West Lafayette, IN) was used to simulate the cyclic voltammograms. The double-layer capacitance (~40 nF) and uncompensated resistance (1200 Ω) were determined from the current response to a potential step made in a nonfaradic region. The diffusion coefficients, D, were determined from the Randles-Sevick equation and a Cottrell plot of an oxidizing potential step. The electrode surface area was determined from a Cottrell plot of a potential step experiment in 1 mM ferrocene in MeCN (D = 1.2 × 10⁻⁵ cm²/s).³

References

Cathodic peak current (splitting is larger than delocalization blocking groups. However, the fact that the peak triazene core and the fluorene linkers serve as good electron communication among the D groups (diarylamino), implying the very nearly the same potential suggests lack of electronic communication among the D groups (diarylamino), implying the very nearly the same potential suggests lack of electronic assignment is consistent with previous studies of a related system.19,48 That means the oxidation of carbazole after the first cycle is an ECE mechanism (Scheme 3).17 Continuous cycling leads to an increasing growth of the smaller oxidation peak, which indicates a polymer film is formed on the surface of the electrode, consistent with previous studies of a related species.18

PTAM4 (Polymer of TAM4). TAM4 can electropolymerize to give a coating on the surface of the electrode.16 After 10 cycle scans (scanning first to the oxidation potential of the

TAM1–TAM3 show chemically reversible oxidation peaks at 0.81, 0.82, 0.82 V vs SCE, respectively (Figure 1). The magnitude of anodic peak current (i_{pa} \sim 12 \mu A) was three times that of the cathodic peak current (i_{pc} \sim 4 \mu A), suggesting that the oxidation process is an overall three-electron transfer process and attributed to the oxidation of each donor group essentially simultaneously. The CV simulation results (Supporting Information, Figure S4) suggest three sequential electron transfers with the ∆Eo between each wave of 20–40 mV, with D_e = 6 \times 10^{-6} cm^2/s and with a fast heterogeneous rate constant (simulation k_e = 1 \times 10^4 cm/s), e.g., nernstian reactions. That the three donor groups oxidize at very nearly the same potential suggests lack of electronic communication among the D groups (diarylamino), implying the triazene core and the fluorene linkers serve as good electron delocalization blocking groups. However, the fact that the peak splitting is larger than \sim 58 mV suggests that there is some interaction, perhaps electrostatic.15 The electrogenerated trication was stable at scan rates as low as 50 mV/s; even after 100 cycles there was no evidence of decomposition or dimer formation.

TAM4 is oxidized at 1.18 V, which is considerably more positive than the potential for oxidation of the diarylamino-capped species. However, the radical cation is unstable, so that the reverse wave is much smaller than for the other TAM compounds, and a new reduction wave of a product appears on the reverse scan. This could be a dimer that forms through the coupling of the two carbazole units at the C3 or C6 position and, as described in the next section, some polymer.16 The dimer can be electrochemically oxidized more easily, at 0.88 V (Figure 3). Scheme 3 shows a possible, but still speculative, mechanism for the formation of a dimeric compound from the two bulky, star-shaped carbazole molecules. However, the first oxidation of carbazole is a mixture of ECE and EC mechanisms, in which the following chemical reaction is very fast.13,17 That means the oxidation of carbazole after the first cycle is an ECE mechanism (Scheme 3).17 Continuous cycling leads to an increasing growth of the smaller oxidation peak, which indicates a polymer film is formed on the surface of the electrode, consistent with previous studies of a related species.18

PTAM4 (Polymer of TAM4). TAM4 can electropolymerize to give a coating on the surface of the electrode.16 After 10 cycle scans (scanning first to the oxidation potential of the

Table 1. Electrochemical Results

<table>
<thead>
<tr>
<th></th>
<th>oxidation potential</th>
<th>reduction potential</th>
<th>D (cm^2/s)</th>
<th>HOMO^b (eV)</th>
<th>LUMO^b (eV)</th>
<th>E^a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM1</td>
<td>0.81</td>
<td>-1.79</td>
<td>4 \times 10^{-6}</td>
<td>-5.27</td>
<td>-2.67</td>
<td>2.60</td>
</tr>
<tr>
<td>TAM2</td>
<td>0.82</td>
<td>-1.78</td>
<td>5 \times 10^{-6}</td>
<td>-5.27</td>
<td>-2.67</td>
<td>2.60</td>
</tr>
<tr>
<td>TAM3</td>
<td>0.85</td>
<td>-1.78</td>
<td>5 \times 10^{-6}</td>
<td>-5.23</td>
<td>-2.67</td>
<td>2.80</td>
</tr>
<tr>
<td>TAM4</td>
<td>1.18</td>
<td>-1.74</td>
<td>3 \times 10^{-6}</td>
<td>-5.63</td>
<td>-2.71</td>
<td>2.92</td>
</tr>
<tr>
<td>PTAM4</td>
<td>0.93</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1.15</td>
</tr>
</tbody>
</table>

"All potentials are versus SCE. ^b HOMO = -E^a vs Fc/Fc^+ - 4.8 eV. LUMO = E_g - HOMO. E^a = E^{ox} + E^{red}."

Figure 2. Cyclic voltammograms of TAM1–TAM4 in 1:1 Bz:MeCN, 0.1 M Bu4NPF6, scan rates 100 mV/s. Working electrode: Pt inlaid disk (diameter \sim 0.5 mm), counter electrode: Pt coil, reference electrode: Ag QRE.

monomer of TAM4), an orange thin film could be seen to build up on the surface of the working electrode during this cycling. Both the original wave seen on the first scan, and the second that builds up at less positive potentials, increased with the number of scans. This suggests the formation of an electroactive and conducting polymer upon oxidation of TAM4 (Figure 3a and 3b). The working electrode coated with PTAM4 was washed with the same solvent, dried in air, and then placed in a fresh electrolyte solution without monomer. The new polymer-modified electrode produced two distinct and reversible oxidation peaks, the first at 0.93 V and the second at 1.15 V vs SCE (Figure 4a).

The scan rate dependence of the polymer film (Figure 4b) shows a peak current directly proportional to the scan rate at low scan rates, which deviates from this trend at scan rates above about 0.3 V/s, suggesting kinetic limitations in the oxidation, perhaps associated with bringing counteranions into the film. The PTAM4 shows electrochromic behavior and is pale orange in the neutral state, changing to dark green when it is oxidized. The PTAM4 electrochromic behavior was stable for at least 2000 cycles, suggesting the possibility of applications.

A question of interest is why the radical cation of the carbazole-substituted species, TAM-4 undergoes rapid dimerization, while those of the diarylamine-substituted ones, TAM1–TAM3, do not. Related parent compounds, e.g., triphenylamines and carbazoles, have been studied by Adams, Nelson, and co-workers. While the simple parent triphenylamine dimerizes rapidly, the rate of dimerization depends strongly on the nature of para-substitution; for example, monosubstituted p-tolyltriphenylamine is much more stable than the parent, and radical cation of tri-p-tolylamine is very stable. Thus, the effective para-substitution by the fluorene and triazine as well as the considerably increased steric hindrance together

![Scheme 3. Electrooxidation of TAM4 and the Following Dimerization Reaction](image)
act to stabilize the radical cations, even for the more highly oxidized states. The carbazolium radical cations, even substituted ones, are less stable.17,18

The substituents affect the energy of the highest occupied molecular orbital (HOMO) as derived from the half wave peak potentials, taking the energy of the HOMO = −E^ox vs Fc/Fc^+ − 4.8 eV. From the results in Table 1, for the star-shaped D–A molecules (TAM1–TAM3) with diarylamino end-capping groups, the frontier energy levels are similar but very different from that of carbazole-containing compound (TAM4). This result is strongly related to the relative electron-donating abilities of the diarylamino groups and carbazole (that can be considered to be a radical cation localized inside the carbazole ring because of its coplanar structure.) The lowest unoccupied molecular orbital (LUMO) is the about the same for TAM1–TAM4 since reduction mainly involves the triazene group in all of these.

Photophysical Properties. Absorption and fluorescence spectra of the TAM compounds were taken in the same solvent as used for electrochemistry and ECL experiments (1:1 MeCN:benzene). The spectra are shown in Figure 5a and 5b, respectively. Table 2 summarizes the photophysical properties of TAM1–TAM4. The absorption spectra of TAM1–TAM3 are very similar and gave λ_max centered at ca. 420 nm, while TAM4 shows a λ_max at 370 nm. Similarly (Figure 5b) TAM1–TAM3 gave emission maxima at about the same λ_max centered at 565 nm, showing that the different substituent groups have only a small effect on electron-donating ability toward the triazene core. In contrast, TAM4 gave an emission maximum centered at 505 nm, blue-shifted from the others by 60 nm due to the weaker electron-donating ability of carbazole. These results agree with the electrochemical results, showing that diarylamino end-capping groups extend the π-conjugation along the fluorene bridge to the central triazene better than that of the carbazole. The PL quantum yields of TAM1–TAM4 were estimated using rubrene as a standard. For TAM1–TAM3, these were ~80% in 1:1 Bz:MeCN, while that of TAM4 was about 70% in the same solvent.

These D–A molecules show large solvatochromic effects in the emission, while the absorption spectra are independent of solvent polarity. A small Stokes shift is observed in less polar solvents such as hexane (λ_{max,PL} = 428 nm), while a large Stokes shift is observed in polar solvents such as DMF (λ_{max,PL} = 575 nm), as shown in Figure 5c–e. Additionally, the intensities of PL emission decrease with increasing solvent polarity, a strong indication of the polar character in the excited states. Therefore, the TAM compounds have strong electronic interactions between the donor and acceptor subunits in the excited state but weak ones in the ground state. This solvatochromism indicates that the stabilization of the excited state is larger than that of ground state by the surrounding solvent molecules.20

Electrogenerated Chemiluminescence (ECL). The TAM compounds (except for TAM4) are good candidates for ECL generation, because they show high PL quantum yields and exhibit stable radical ion species, as shown in the cyclic voltammograms. Figure 6 displays the ECL spectra of these molecules. In the simple ECL mechanism, light is produced during annihilation between the cation radical and the anion radical. However, for these D–A molecules, the annihilation can also occur between the anion radical and the radical bi- and trication species.

TAM1–TAM3 give relatively strongly ECL, which could be seen by the naked eye in a well-lit room. Figure 6 shows the ECL spectra, which are similar to their fluorescence spectra, showing that the emission is mainly from the excited monomer. The very small red-shift of the ECL spectra relative to the PL spectra normally encountered in ECL studies is attributed to an inner filter effect owing to the high sample concentration used for ECL and also to a small instrumental offset. The ECL spectrum of TAM2 taken with a dilute solution (0.2 μM), the same as that used in the PL, was obtained with the same CCD detector used for ECL experiments, showed that emission shifted by only 3 nm. The ECL probably occurs via the S-route, since the enthalpy of annihilation (ΔH_{ann} = E_{ox}^{0} − E_{red}^{0} − 0.1) is larger than the energy required to generate the excited singlet state E_{s}. In contrast, TAM4 shows only a very weak and broad ECL peak (Figure 7). The weak ECL emission of TAM4 is ascribed to instability of the radical cation and the formation of the polymer film on the electrode surface. The broad emission band (bandwidth ~ 330 nm) might indicate ECL emission by the dimer formed during the electrolysis. However, when benzoyl peroxide (BPO) was used as a co-reactant with only reduction, a strong ECL peak was observed (Figure 6d) with the co-reactant-induced ECL spectrum of TAM4 narrower and similar to the PL spectrum. This suggests that the annihilation ECL of TAM4 (i.e., pulsing from E_{pa} + 80 mV to E_{pc} − 80 mV) is mainly due to the emission of the monomer, dimer, and perhaps the polymer. We attempted to obtain the ECL spectrum of an electrochemically produced polymer film (PTAM4) in a monomer-free solution with and without co-reactant. Although the emission was too weak to obtain an ECL spectrum with a

CCD, with a more sensitive photomultiplier tube (PMT) as a detector, ECL light from the polymer could be recorded; we did not attempt to obtain a spectrum with band-pass filters. Figure 8 shows the profile of TAM2 ECL intensity versus time for individual potential steps. The alternation of potential was pulsing from $E_{pa} + 100 \text{ mV}$ to $E_{pc} - 100 \text{ mV}$, which is sufficient to oxidize and reduce TAM2. Unlike the usual profiles from annihilation of stable radical monoions, where equal emission is found on anodic and cathodic steps, the ECL emission here shows much larger emission in the reduction steps (Figure 8). This behavior was independent of the direction of the first potential step. The difference here is that the annihilation reaction involves the trication reacting with the monoanion. This involves several different routes, such as

$$D^{3+} + D^- \rightarrow D^+ + D^{2+}$$ \hspace{1cm} (14)

along with various comproportionation reactions, e.g.,

$$D^{3+} + D \rightarrow D^{+} + D^{2+}$$ \hspace{1cm} (15)

followed by radical annihilation. In work to be published elsewhere, we have shown through digital simulation that such behavior is expected when there are significant differences in the concentrations of oxidizing and reducing equivalents. In this case, the availability of a higher concentration of one of the reactants diffusing away from the annihilation zone and back during the following pulse will lead to a larger emission and a more extended transient decay, in this case occurring during the cathodic pulse when the trication formed upon oxidation reacts with the anion.

Conclusion

A series of highly fluorescent, star-shaped donor−acceptor molecules with an electron-accepting triazine core bridged by fluorene linked to electron-donating diarylamino and carbazolyl...
groups were synthesized and characterized. The donor–acceptor configuration produces a strong photoinduced charge separation in the excited state, and strong solvatochromism in the PL spectra. The electrochemical oxidation of the triarylamino terminus of \(\text{TAM1–TAM3} \) gave rise to stable radical trications, whereas a stable radical anion was formed upon the reduction of the triazene core. Dimerization of the carbazole-substituted \(\text{TAM4} \) was observed during the electrochemical oxidation, producing a polymer film on the electrode surface. The polymer film (PTAM4) exhibits electrochronic behavior: pale orange in the neutral state and dark green in oxidized state.

Figure 6. ECL and PL spectra for the 1 mM star-shaped molecules in 1:1 MeCN:Bz, 0.1 M Bu4NPF6 as a supporting electrolyte. \(\text{TAM1–TAM3} \) are direct annihilation ECL (\(E_{pc} - 80 \) mV and \(E_{pa} + 80 \) mV). \(\text{TAM4} \) is coreactant ECL using 10 mM BPO. WE is J-type ~ 2 mm platinum electrode, RE is Ag wire as a quasireference electrode, CE is Pt coil.

Figure 7. ECL spectrum of \(\text{TAM4} \), by direct annihilation. Applied potential pulsed between the reduction potential (\(E_{pc} - 80 \) mV and \(E_{pa} + 80 \) mV) of the dimer formed on the oxidation side.

Figure 8. \(i-t \) curve for \(\text{TAM2} \), pulse time: 0.1 s, step pattern: \(E_{pa} + 100 \) mV to \(E_{pc} - 100 \) mV vs SCE. ECL photocurrent (red line); electrochemical current (black line). Anodic pulse is positive; cathodic pulse is negative.

\(\text{TAM1–TAM3} \) show relatively strong ECL, while \(\text{TAM4} \) only shows weak ECL via the direct annihilation reaction. However with BPO as a coreactant, bypassing the electrochemical oxidation step, \(\text{TAM4} \) produced strong ECL.

Acknowledgment. We thank Roche, Inc. and the Robert A. Welch Foundation (F-0021) for support of this research. We also thank the National Science Council of Taiwan for financial support.

Supporting Information Available: Text giving additional synthesis information for \(\text{TAM1–TAM4} \); figure showing the numbering of the carbons in \(\text{TAM1–TAM4} \). This material is available free of charge via the Internet at http://pubs.acs.org.

JA104160F