Evaluation of the Chemical Reactions from Two Electrogenerated Species in Picoliter Volumes by Scanning Electrochemical Microscopy

Qian Wang, Joaquín Rodríguez-López, and Allen J. Bard* [a]

The volume created by the positioning of two scanning electrochemical microscope (SECM) probes (tip and substrate) at a micrometric distance defines a “picoliter beaker” where homogeneous electron-transfer reactions are studied. The SECM is used to concurrently electrogenerate in situ two reactive species and to evaluate the possibility of detecting their reactivity. Two reaction cases are studied: the first, called the “reversible case”, occurs when the electrochemically generated species at the substrate electrode can also react at the tip to yield the same product as the reaction in the gap. The second case, named the “irreversible case”, occurs when the electrochemically generated species at the substrate are not able to react at the tip. Digital simulations are performed and compared to experimental studies. These show that an unusual compensation between collection and feedback effects render the analysis inapplicable in the “reversible case”. The “irreversible case” is shown experimentally.

Introduction

Since its introduction about 20 years ago,[1,2] the scanning electrochemical microscope (SECM) has been used to study a variety of systems, both chemical and electrochemical;[3,4] these, however, have largely been confined to the study of surface reactivity and characterization of topography and to surface-bound chemical or biochemical systems.[5] Herein, we deal with the evaluation of the SECM as a tool to study chemical reactivity in a homogeneous phase, specifically electron-transfer reactions, where the reactants can be produced in situ through an electrochemical assembly in the picoliter volume created by positioning two ultramicroelectrodes (UME) at short distances.

The feedback mode of SECM consists in the monitoring of the current at a probe electrode (tip) when it interacts with a substrate.[6] The origin of this current is the electrogeneration of a reduced or oxidized species in solution by reduction or oxidation of a redox mediator at the tip. Measurable effects on this electrochemical signal are only possible when the probe and the substrate are close to each other, for example, to a distance shorter than about five times the UME radius where their diffusion layers can interact; a typical UME has a radius close to 10 μm or smaller. The electrogenerated species may be reactive towards chemical species at the substrate; thus, the feedback mode has been applied to study the heterogeneous reactivity, for instance, from mediators that “micro titrate” chemisorbed species at electrodes,[5,6] that chemically etch metals[7] involved in the study of the effects of mediator surface diffusion,[8–10] lateral charge propagation in polymer films,[11,12] and diffusion in monolayers,[13] as well as used in the detection of reactive species in living cells.[14] In these examples, the SECM probe acts both as a generator of the reactive species and as a transducing element as the feedback current indicates the existence and extent of chemical reaction.

Herein, we sought to find an analogy to the probing of surfaces with the evaluation of reactions in solution. One SECM approach to studying homogeneous electron-transfer reactions would take advantage of creating small reaction volumes at which feedback effects could be used to study the chemical reactivity of two electrogenerated substances in situ. A “picoliter beaker” is indeed a necessary condition for the SECM setup to concurrently generate the reactants and detect their reactivity, just as a small distance to the substrate is necessary in probe–surface feedback experiments. Figure 1 shows a schematic oversimplified view of such a setup in which two SECM probes (one of them acting as a tip and another as a substrate),[15] with embedded metal discs of radius \( a \), are co-aligned and separated at a distance \( d \). The tip and the substrate can generate reactive species which will react mainly in the volume defined by the interelectrode gap \( d \) and the extension of the flat end of the UMEs; this flat end is typically described by the dimensionless number \( R_G \) which is obtained by dividing the radius of the tip’s metallic disk including the insulating sheath of glass, \( r_G \), by the radius of the metallic disk, that is, \( R_G = r_G / a \). The volume enclosed by these quantities can be imagined approximately as a cylinder, as shown in Figure 1. For a “large
Considering the inter-electrode gap, the insulating sheath of glass, \( \mathrm{RG} = 2 \), the volume is estimated to be \( V \approx 25 \, \text{pL} \). It will typically be smaller than this figure, for instance, \( V \approx 25 \, \text{pL} \) if \( d \approx 20 \, \mu \text{m} \) and \( \mathrm{RG} = 2 \) with \( a \approx 10 \, \mu \text{m} \), which are more common conditions for a two-electrode assembly. Strictly speaking, a larger volume needs to be considered to fully describe the system (large circle in Figure 1); however, the cylindrical \( \text{pL} \) volume suffices to describe most of the reaction front.

While a variety of experimental techniques and theoretical approaches exist for the study of homogeneous electron transfer, we sought to evaluate the applicability of the SECM for the following main reasons: First, the versatility offered in general by electrochemistry to generate coulometrically reactive species in situ at an electrode starting from unreactive parent molecules and without the necessary addition of chemical oxidants or reducing agents. Related to this, no isolation steps are required for the reactants since they can be produced directly in the reaction medium. In the case of relatively unstable molecules, at the micrometer sized tip–substrate gaps used in SECM (1–100 \( \mu \text{m} \)), molecules with lifetimes (based on first-order kinetic decomposition) on the order of 10–0.001 s can be studied by judicious choice of a controllable parameter, such as the distance between the SECM probes. Finally, the possibility of carrying out experiments at steady state and in which the SECM probe acts both as the reactant generator and reactivity detector simplifies notably the experimental design for the study of fast kinetics.

The use of electrochemical methods for the study of following chemical processes, that is, homogeneous reactions that occur after electrochemical ones, has been extensively developed both experimentally and theoretically in the past 50 years, especially for the case of cyclic voltammetry (CV). The use of the SECM in similar cases has already been explored and proved useful where mechanistic information, such as the rate of dimerization in organic and biochemically relevant systems or scavenging of reactive species has been acquired using a combination of the tip generation–substrate collection (TG/SC) and feedback modes. Other SECM applications include the obtaining of kinetic parameters from electron-transfer reactions supported on the interface between two immiscible liquids and the use of following homogeneous reactions aimed at compressing the diffusion layer of SECM probes to increase their resolution, for example, for the patterning of materials or the detection of biorelated analytes.

The use of small volumes in the SECM, down to the zeptoliter mark, has been described before for the study of a small number of molecules, it has been suggested in these SECM studies and in other submicron-fabricated electrochemical examples that such platforms could be used to probe homogeneous reactions (and even individual reactions). Although our picoliter approach is larger in dimensions, it perfectly allows the production of two reactants at different electrodes while using SECM feedback to evaluate their reactivity. Our intention is then to discuss the conditions under which this can be done and what type of information and applications can be envisioned.

Mode of Operation and Cases

The detection of reactivity in the “picoliter beaker” involves the use of feedback and generation/collection operation modes of SECM. Two UME probes are used, both in the shape of SECM tips; we call one probe, the tip and the other the substrate, following usual SECM practice. The electrodes are aligned concentrically and the tip positioned at a fixed distance away from the substrate by the use of approach curves (i.e. current-to-distance relationships that apply for UMEs operating at steady state). The basic idea is to generate in situ a reactive species at each of the SECM probes, in this case an oxidized species at one electrode and a reduced species of a different redox couple at the other. The species diffuse away from the electrodes into the tip–substrate gap and react in a homogeneous electron transfer; the parent molecules do not react in their initial states, but are regenerated following the reaction of the electrogenerated species. This causes an increase in the diffusive flux of the parent molecules to their respective electrodes, which is reflected as an increase in the current measured at them; for practical purposes, from now on we refer to the increase in the tip current. The increase is similar to the one observed in the well-known feedback mode of SECM, differing in the fact that it is brought about by a homogeneous reaction of the species in the tip–substrate gap rather than from regeneration through heterogeneous kinetics at the electrodes. Two general cases are treated, a “reversible” and an “irreversible” case, which are depicted in Figures 2A and 2B, respectively.

For the reversible case in Figure 2A, two reversible mediators (a reducible species, \( \text{O}_1 \), and an oxidizable species, \( \text{R}_2 \), are initially present in the solution; \( \text{O}_1 \) and \( \text{R}_2 \) do not react, consistent with the current–potential (I–E) character of the system shown in Figure 2 panel A4. We now present a quick overview of the feedback and collection modes on the tip with this configuration with different potentials applied to tip and substrate. In Figure 1, panels A1 and A2, we show the usual SECM feedback cases where only one of the couples, either \( \text{O}_1/\text{R}_1 \) (A1) or \( \text{O}_2/\text{R}_2 \) (A2) are involved. In the feedback mode in A1,
the tip operates at a potential \( E_R \), thus reducing \( O_1 \) to \( R_1 \) at a diffusion-limited rate, and the substrate is held at a potential \( E_M \) where it is unable to oxidize \( R_2 \) to \( O_2 \), but is able to oxidize \( R_1 \) to \( O_1 \). When this happens, the \( O_1 \) that is fed back to the tip by diffusion causes an increased current at it, termed positive feedback. This increase in the tip current is only significant when the tip–substrate gap, \( d \), is less than or about the radius of the tip microdisk, \( a \). This implies that a narrow diffusion layer to which \( O_1 \) is recycled and effectively re-captured by the tip is required for feedback.\(^{1,2}\) Alternatively, in the tip collection mode for the \( O_2/R_2 \) couple, the tip is set at a potential \( E_R \) while the substrate is set to a potential \( E_O \) where it is able to oxidize \( R_2 \) to \( O_2 \) at a diffusion-limited rate. The tip in this case reduces \( O_2 \) to \( R_2 \) but is unable to reduce \( O_1 \) to \( R_1 \). Collection is a process that occurs over a much larger distance range than feedback, often spanning several tip radii with a detectable signal.\(^{31}\)

The concept behind the methodology proposed here to study homogeneous electron transfer is to obtain a positive feedback-like response at the tip due to a second-order reaction of the tip-generated species with the substrate-generated species, as schematically shown in Figure 2, panel A3. In this experiment, the tip is set at a potential \( E_R \) while the substrate is set at a potential \( E_O \). Reaction scheme 1 shows the relevant processes. Both electrodes are carrying out their respective reactions at a diffusion-limited rate and their products are being discharged mainly into the tip–substrate gap [Eqs. (1) and (2)] while the homogeneous reaction between the generated species proceeds according to Equation (3).

Reaction scheme 1:

\[
\begin{align*}
O_1 + e & \rightarrow R_1 \text{ heterogeneous, tip, diffusion limited} \\
R_2 - e & \rightarrow O_2 \text{ heterogeneous, substrate, diffusion limited} \\
R_1 + O_2 & \rightarrow O_1 + R_2 \text{ homogeneous, tip-substrate gap} \\
O_2 + e & \rightarrow R_2 \text{ heterogeneous, tip, collection} \\
O_1 + e & \rightarrow R_1 \text{ heterogeneous, substrate, collection}
\end{align*}
\]

Figure 2. Schematics of the operation for the reversible (A) and irreversible case (B). A1) Two electrochemically reversible mediators are used. A1) Feedback. The tip potential is set at the reduction potential \( E_R \) and the substrate held at the middle potential \( E_M \) such that positive feedback occurs by reaction of mediator 1. A2) Collection at the tip. The substrate is set at the oxidation potential \( E_O \) to oxidize mediator 2 while the tip is kept at \( E_R \) to reduce it back. A3) Annihilation in the gap. Tip is set at \( E_R \) to reduce mediator 1 and the substrate is set to \( E_O \) to oxidize mediator 2. The electrochemical products \( R_1 \) and \( O_2 \) react in the gap to regenerate \( O_1 \) and \( R_2 \). A4) I–E diagram of the potentials and predominant regions described. B) Electrochemically reversible behavior at the tip and generation of irreversible species at the substrate. The tip is unable to collect the species generated at the substrate. Electrode dimensions are explained further in the text. B1) Technique for the irreversible case. The tip reduces the reversible mediator \( O_1 \) to \( R_1 \) while the substrate generates a reducible species \( O_{irr} \). \( R_{irr} \) and \( O_{irr} \) react in the gap to regenerate \( O_{irr} \). B2) I–E diagram showing the thermodynamic possibility of the irreversible case allowed by sluggish kinetics of the reaction of the irreversible species at the tip.

The idea in reaction scheme 1 is that the production at the substrate of the reacting species O2, creates a regeneration boundary for O1 [Eq. (3)] that can serve in a similar way as the substrate electrode does to produce positive feedback, but at a closer distance than in the usual SECM case (compare panels A1 to A3 in Figure 2). Notice however that in this reversible system, Equations (4) and (5) in reaction scheme 1 predict a complication, because the tip and the substrate are concurrently set to a potential where they are able to consume the reactants in Equation (3). This also provides an electrochemical response at the tip of the same sign as the one expected for the effect of homogeneous reaction of R1 and O2. Unlike feedback and collection, the homogeneous reaction has fewer geometric restrictions, for example, the homogeneous electron transfer occurs in a volume, rather than on a surface. It should be possible to obtain, experimentally, a difference in the tip current when subtracting the maximum possible feedback (Figure 1, panel A1) and the maximum possible collection (Figure 1, panel A2), as shown in Equation (6):

\[ i_{\text{react}} = i_{\text{ann}} - i_{\text{feed}} - i_{\text{coll}} \]  

where \( i_{\text{ann}} \) stands for the current read by the tip during the anihilation (second-order reaction, Eq. (3)) experiment, \( i_{\text{feed}} \) stands for the current read during a positive feedback experiment, and \( i_{\text{coll}} \) stands for the current read during a collection experiment (of the substrate product). \( i_{\text{react}} \) stands then for a distinguishable current that would depend on the kinetics of the electron-transfer reaction, accessible by the use of digital simulations, which have been successfully used to characterize diverse SECM systems.\(^{[11]}\) The reversible case was studied experimentally by the probing of the reaction between electrogenerated \( \text{Fe(CN)}_6^{3-} \) and \( \text{Ru(NH}_3)_6^{2+} \) from their precursors (see Experimental Section).

The irreversible case, as shown in Figure 2B, avoids the collection complication outlined previously. Here, a reversible mediator \( \text{O}_2/\text{R}_2 \) equivalent to \( \text{O}_1/\text{R}_1 \) is again used at the tip, generating \( \text{R}_2 \) by reduction of \( \text{O}_2 \) in a chemically irreversible species \( \text{O}_n \) generated at the substrate from an inactive species A (Figure 2, panel B1). Electrochemical reduction of \( \text{O}_n \) is assumed to occur only at an electrocatalyst electrode. Thermodynamically, the reaction between \( \text{R}_2 \) and \( \text{O}_n \), in the tip–substrate gap is allowed, however, the electrochemical reduction of \( \text{O}_n \) at the tip is prevented by choosing a tip material that lacks the catalytic properties required to reduce \( \text{O}_n \). As shown in Figure 2, \( \text{l–E} \) diagram in panel B2, the tip is able to reversibly act on the \( \text{O}_2/\text{R}_2 \) pair; however, it requires a substantial overpotential to be able to react \( \text{O}_n \). Reaction scheme 2 summarizes the behavior of this system.

Reaction scheme 2:

\[ \text{O}_n + e^- \rightarrow \text{R}_n \text{ heterogeneous, tip, diffusion limited} \]  

\[ \text{A} - e^- \rightarrow \text{O}_n \text{ heterogeneous, substrate} \]  

\[ \text{R}_n + \text{O}_n \rightarrow \text{O}_n + \text{P} \text{ heterogeneous, tip - substrate gap} \]  

\[ \text{R}_n - e^- \rightarrow \text{O}_n \text{ heterogeneous, substrate, collection} \]

The diffusion and kinetic problem was simulated using the finite element method provided by the Comsol Multiphysics v.3.2 software (COMSOL, Inc., Burlington, MA) in axial 2D symmetry (variables are \( r, z \)) under steady-state conditions. A complete report on the simulation can be found in the Supporting Information.

**The Reversible System**

The geometry of the problem was assumed to be the one presented in Figure 2A and diffusion and kinetic conditions as outlined in reaction scheme 1. Equations (1), (2), (4), and (5) are assumed to occur at the electrodes at a diffusion-limited rate at both the tip and the substrate (at the inlaid electrode boundary); the potentials were recreated as in Figure 2A, panel A3, with the tip potential set at \( E_t \) and the substrate at \( E_o \). The flux \( J \) to the electrodes, which is coupled to diffusion and kinetics in the inter-electrode gap, was modelled using Butler–Volmer conditions. Equations (13) and (14) for each pair of species, and assumed for both reactions a standard rate constant \( k^0 = 0.1 \text{ s}^{-1} \) and a transfer coefficient \( \alpha = 0.5; \eta = 38.94 \text{ V}^{-1} \). Equations (13) and (14) are used to describe the flux of each species to the tip; in the case of the substrate, \( E_s \) is replaced by \( E_o \) (see Equations S2 and S3 of the Supporting Information). The following parameters were chosen for the potentials: \( E_t = -0.4 \text{ V} \), \( E_o = 0.4 \text{ V} \) and formal potentials \( E^0_t = -0.2 \text{ V} \) for the \( \text{O}_1/\text{R}_1 \) pair and \( E^0_s = 0.2 \text{ V} \) for the \( \text{O}_2/\text{R}_2 \) pair; this ensured the recreation of the predominant regions and the \( l–E \) characteristics shown in Figure 2A, panel A4. We also assumed that the diffusion coefficients of the members in each redox pair were the same. Under these conditions, the electrodes exhibit the typical response for a system with positive feedback and collection [Eqs. (13) and (14)]:

\[ J_{O_1} = k^0_s(c_{O_1} e^{-\alpha (E^0_t - E^0_s)}) - c_{R_1} e^\alpha (E^0_t - E^0_s)) \] ; \( J_{R_1} = -J_{O_1} \)  

When Equation (11) applies by inhibiting the collection of \( O_i \) at the tip, Equation (6) simplifies to Equation (12):

\[ i_{\text{react}} = i_{\text{ann}} - i_{\text{feed}} \]

Because of the additional constraints presented by the irreversible mechanism, the selection of a suitable system to prove this case is more difficult and consequently the direct characterization of \( i_{\text{ann}} \) is probably less straightforward. We discuss the reduction of electrogenerated \( O_{irr} \) (acting as \( O_i \), and generated from the platinum-catalyzed oxidation of \( \text{H}_2\text{O} \) by \( \text{Fe}^{3+}[\text{EDTA}] \) (generated at the tip from \( \text{Fe}^{2+}[\text{EDTA}] \)) to produce the final product \( \text{H}_2\text{O} \) and regenerating the initially present \( \text{Fe}^{3+}[\text{EDTA}] \). For this purpose, a combined SECM study and the direct use of digital simulations allows for a much easier understanding of the described irreversible system.

**Digital Simulations**

The diffusion and kinetic problem was simulated using the finite element method provided by the Comsol Multiphysics v.3.2 software (COMSOL, Inc., Burlington, MA) in axial 2D symmetry (variables are \( r, z \)) under steady-state conditions. A complete report on the simulation can be found in the Supporting Information.
Evaluation of Chemical Reactions by SECM

$J_{O_2} = k^0(C_{O_2}, e^{-\frac{am}{R T}} - C_{O_2}, e^{1 - \frac{am}{R T}}); J_{O_2} = -J_{O_2}$ (14)

In Equations (13) and (14), $C_{O_{1,irr}}, C_{O_{2,irr}}, C_{O_{1}},$ and $C_{O_{2}}$ represent the concentrations of the species at the electrode boundary (either tip or substrate) and are determined by the coupling of the diffusive and kinetic problem. As an initial condition, only O1 and R2 are present in the simulation subdomain and have bulk concentrations $C_{O_{1}} = C_{O_{2}} = 1 \mu M$. The diffusion problem is coupled to the homogeneous kinetics at the tip–substrate gap, which is represented by Equation (3) and solved at steady state for different values of the reaction constant $k$. For the tip electrode ($x=0$), it is possible in the simulations to separate the electrochemical response (given as the integral of the flux of a given species at the microdisk boundary) due to feedback of the O1/R1 pair [Eq. (15)] and the collection of O2 [Eq. (16)]:

$$i_{(tuo+ann)} = \int_{r=0}^{r=a} 2\pi n F D \frac{\partial C_{O_1}(r, 0)}{\partial z} dr$$

$$i_{coll} = \int_{r=0}^{r=a} 2\pi n F D \frac{\partial C_{O_2}(r, 0)}{\partial z} dr$$

In Equations (15) and (16), $n$ stands for the number of exchanged electrons, $F$ is Faraday’s constant (96 485 C mol$^{-1}$), $a$ is the radius of the microdisk electrode, and $D$ stands for the diffusion coefficient of the species.

The Irreversible Case

For this case, the experimental geometry that is sketched in Figure 2B was used. Butler–Volmer kinetics are used to model the flux boundary condition at the electrode surfaces for the reversible redox mediator $O_{irr} / R_{irr}$ ($E_{f}$ is used at the tip and $E_{0}$ at the substrate), for example, Equation (17) for the tip. The generation of the irreversible species, $O_{irr}$, is recreated by using a concentration boundary condition at the substrate [Eq. (18)] and the tip shows no reactivity towards this species (insulating boundary):

$J_{O_{irr}} = k^0(C_{O_{irr}}, e^{-am} - C_{R_{irr}}, e^{1 - am}); J_{O_{irr}} = -J_{O_{irr}}$ (17)

$C_{O_{irr}} = c$ (18)

In Equation (17), the following parameters were chosen: $E_{f} = 0 \text{ V}, E_{0} = -0.2 \text{ V} (E_{0} = 0.2 \text{ V} \text{ for the substrate}), k^0 = 0.1 \text{ m s}^{-1}$, and $\alpha = 0.5$. $C_{O_{irr}}$ and $C_{R_{irr}}$ represent the concentrations of $O_{irr}$ and $R_{irr}$ respectively, at the surface of the electrode. In Equation (18), $c$ is a fixed concentration value that is used as a consequence that the reaction to generate $C_{O_{irr}}$ is not diffusion-limited; nonetheless, it is operating at steady state. The homogeneous electron transfer is considered to proceed through Equation (9), although in the system studied, that is, the reduction of O$_2$ ($O_{2}$) by Fe$^{3+}$[EDTA] ($R_{4}$) four sequential processes—each involving a molecule of Fe$^{3+}$[EDTA]—were taken into account to model the four electron transfers to complete the reduction of O$_2$ to H$_2$O. The first step was considered to be rate-determining and the following three steps were modeled to be close to diffusion control.

Due to the lack of electrochemistry of $O_{irr}$ at the tip, the electrochemical response at the tip is simply obtained by Equation (19):

$$i_{(tuo+ann)} = \int_{r=0}^{r=a} 2\pi n F D \frac{\partial C_{O_{irr}}(r, 0)}{\partial z} dr$$

An additional procedure that had to be taken into account to model the irreversible case was the determination of the concentration $c$ in Equation (18). This was done in an independent collection experiment where two platinum SECM tips were aligned concentrically and one of them generated O$_2$, which was collected by the other. The equivalent concentration of oxygen produced at the substrate was obtained through simulation and the value fed to the annihilation simulations discussed above. Details are given in the Supporting Information.

Experimental Section

Chemicals: All chemicals were used as received. Potassium sulfate (K$_2$SO$_4$, Aldrich, St. Louis, MO), potassium ferrocyanide (K$_3$Fe(CN)$_6$, 3H$_2$O), hexaammineruthenium(III) chloride (99 %, [Ru(NH)$_3$]$_2$Cl$_2$, Strem Chemicals, Newburyport, MA), agar (Purified grade), sodium perchlorate (99 %, NaClO$_4$, A.C.S reagent). All solutions were prepared with deionized Milli-Q water. Acetate buffer solution (pH 4.7) was prepared by adjusting the pH of a 0.3 M solution of sodium acetate (Na$_2$HCO$_3$, Fisher scientific, A.C.S reagent) with acetic acid (C$_2$H$_4$O$_2$, Fisher Scientific, A.C.S reagent). Fe$^{3+}$[EDTA] solution was prepared by dissolution of iron(III) nitrate nonahydrate (98 %, Fe(NO$_3$)$_3$, 9H$_2$O, Aldrich, A.C.S reagent) and (Ethyleneiminotri)tetraacetic acid, disodium salt dihydrate (Na$_2$H$_3$EDTA.2H$_2$O, A.C.S reagent) in 0.3 M acetate buffer solution (pH 4.7).

Solutions were bubbled with humid Ar prior to any electrochemical experiment and kept under the Ar blanket during experiments.

Electrodes: The SECM tips were fabricated using gold (99.999 %) or platinum (99.999 %) wires (25 µm in diameter) from Goodfellow (Devon, PA), sealed in soft glass by procedures described elsewhere.11 A carbon fiber tip was fabricated by the same procedure using carbon yarn (10 µm in diameter, Alfa-Aesar, Newburyport, MA). All electrodes were polished on microcloth pads (Buehler, Lake Bluff, IL) with alumina paste (0.05 µm) and then sonicated for 15 min in deionized Milli-Q water prior to use. The platinum electrodes had an RG = 4 and gold electrodes had an RG = 4 while the carbon fiber tip had an RG = 10, where $RG = R/R_t$, $R_t$ being the radius of the glass insulating layer around the microdisk, including the radius of the microdisk itself.

A Ag/AgCl in saturated KCl reference electrode and a 1 M sodium perchlorate 3 % w/v agar gel salt bridge (to avoid excessive chloride contamination from leakage through the glass frit of the reference) were used for all the experiments. All potentials in this study are referred to the Ag/AgCl (saturated KCl) electrode. A piece of 0.5 mm tungsten wire from Alfa (Danvers, MA) was used as the counter electrode in all experiments. All electrochemical measurements were performed using either a CH1900 or a CH1920C SECM (CH Instruments, Austin, TX).

Experimental Procedure: Both tip and substrate were UMEs for the electrode setup. The substrate was fixed in a Teflon electrochemi-
The Reversible Case: We take the reaction of Fe(CN)$_6^{3-}$ and Ru(NH$_3$)$_6^{3+}$, generated from the precursors Fe(CN)$_6^{4-}$ and Ru(NH$_3$)$_6^{3+}$, as an example. Once the electrodes were aligned by use of either redox pair [Fe(CN)$_6^{3-}$ /Fe(CN)$_6^{4-}$, $E_{1/2} = 0.24$ V vs. Ag/AgCl] or Ru(NH$_3$)$_6^{3+}$/Ru(NH$_3$)$_6^{2+}$, $E_{1/2} = -0.19$ V vs. Ag/AgCl, the electrodes were withdrawn to an approximate distance of 200 μm and single mediator approach curves were obtained. Feedback and tip generation–substrate collection approach curves were recorded and used to calibrate the tip–substrate distance and to compare to other cases; these were obtained by setting the tip to a potential where diffusion-limited reduction of Ru(NH$_3$)$_6^{3+}$ to Ru(NH$_3$)$_6^{2+}$ ($E_{1/2} = -0.4$ V vs. Ag/AgCl) was accomplished and the substrate set to a more positive potential ($E_{sub} = 0$ V vs. Ag/AgCl) which is sufficient for the oxidation of Ru(NH$_3$)$_6^{2+}$, but still does not cause appreciable oxidation of Fe(CN)$_6^{4-}$. For the annihilation approach curves, the tip is held at a potential to reduce Ru(NH$_3$)$_6^{3+}$ to Ru(NH$_3$)$_6^{2+}$ ($E_{tip} = -0.4$ V vs. Ag/AgCl) and the substrate held at a potential to oxidize Fe(CN)$_6^{4-}$ to Fe(CN)$_6^{3-}$ ($E_{substr} = 0.4$ V vs. Ag/AgCl). Additionally, measurements were taken at fixed distances between the tip and substrate; chronoamperograms were obtained at these same potentials and the average steady-state currents read after 30 s were used to apply Equation (6).

The Irreversible Case: We take as an example the reaction of electrogenerated $O_2$ (at a Pt substrate by oxidation of water) with Fe$^6$-[EDTA] electrogenerated at the tip from Fe$^6$[EDTA]. As a first step, a calibration experiment was run to determine the amount of oxygen discharged into the tip–substrate gap by the following procedure: Two Pt UMEs ($\sigma = 12.5$ μm, $RG = 5$) were aligned concentrically and immersed in 0.3 M acetate buffer (pH 4.7), the distance between them was 20 μm. Substrate generation/tip collection was carried out using CV at the substrate and setting the Pt tip collector to a potential where diffusion-limited reduction of $O_2$ to water occurs ($E_{collecte} = -0.1$ V vs. Ag/AgCl). The substrate was swept at a slow scan rate ($\nu = 20$ mV/s$^{-1}$) from 1.0 V to 1.8 V. The current read at the tip collector was used as the experimental parameter for digital simulations to determine the amount of oxygen available for reaction at selected substrate potentials for its use in the annihilation experiments. Following this, the setup described in Figure 1B was used. A carbon fiber tip was approached to and aligned with a Pt substrate using the positive feedback mode. The tip was set to a potential that allowed the diffusion controlled generation of Fe$^6$[EDTA] from Fe$^6$[EDTA] ($E_{tip} = -0.6$ V vs Ag/AgCl) and the substrate to a potential where the oxidation of Fe$^6$[EDTA] was possible without the discharge of any reactive product (i.e. oxygen) into the solution ($E_{substr} = 0$ V vs Ag/AgCl). The tip was then set a desired distance away from the substrate and the annihilation experiment run. The tip was held at the diffusion-limited reduction of Fe$^6$[EDTA] while the substrate potential was scanned slowly ($\nu = 20$ mV/s$^{-1}$) to over a range of potentials where the oxidation of water to $O_2$ is possible (from 1.0 to 1.8 V vs. Ag/AgCl).

Results and Discussion

The Reversible Case

For the reversible system, two Au UMEs ($\sigma = 12.5$ μm, $RG = 4$) were used as tip and substrate, respectively. Two well-known mediators, Fe(CN)$_6^{4-}$ and Ru(NH$_3$)$_6^{3+}$, were selected to form the reversible system. A typical tip CV of a solution containing 1 mM Fe(CN)$_6^{4-}$ and 1 mM Ru(NH$_3$)$_6^{3+}$ is shown in Figure 3; these species exhibit a reversible behavior, and their UME voltammogram shows the characteristic sigmoid shape; the plateau limiting current ($i_{lim}$) is described by Equation (20):

$$i_{lim} = 4nF \Delta c^*$$

where $n$ is the number of electrons, $F$ is the Faraday constant, $D$ is the diffusion coefficient of the mediator, $\sigma$ is the radius of the tip, and $c^*$ is the bulk concentration of the species. For Fe(CN)$_6^{4-}$ and Ru(NH$_3$)$_6^{3+}$, the reported values of $D$ are $7.2 \times 10^{-6}$ and $5.5 \times 10^{-6}$ cm$^2$s$^{-1}$, respectively$^{[26]}$ these values are close enough that in the medium used for this case, the limiting current appears to be of essentially the same magnitude (Figure 3).

Figure 4A shows the usual single mediator approach curve in the feedback mode (using the Ru(NH$_3$)$_6^{3+}$/2- pair) and the substrate current when the tip is set to a potential $E_0$ and the substrate to a potential $E_0$ according to Figure 2A. The tip and substrate currents ($i_t$ and $i_s$) are normalized with respect to the steady-state tip current at infinite distance, $i_{ss}$, and distances with respect to the radius of the tip, where $L = d/a$. The feedback at the tip and the collection at the substrate are shown to very well to the simulation results as expected from this well-behaved mediator. Notice that as mentioned earlier in the mode of operation, collection spans a much larger distance than the change in the response brought by positive feedback. The expectation is that in the annihilation experiment, the reaction of the tip generated product with the diffusing species produced at the substrate will produce great-
er feedback at a given $d$ compared to the usual single media-
tor case. That is, the far reaching diffusion layer created by the
discharge Fe(CN)$_6^{3-}$ and Ru(NH$_3$)$_6^{2+}$ will provide a closer reac-
tion front to the tip from which an increased positive feedback-
lk reaction response could be obtained. Thus, one might expect
that the response would depend on the second order homo-
genous electron transfer reaction constant, $k$, whose value
could be determined by use of Equation (6) coupled to the re-
results from digital simulations.

Figure 4B shows an annihilation approach curve in which
now the tip is set at a potential $E_T$ and the substrate at a po-
tential $E_S$ so that reactants Fe(CN)$_6^{3-}$ and Ru(NH$_3$)$_6^{2+}$ are pro-
duced and react in the same fashion as shown in Equation (3).
The recorded currents show a clear increase in the electro-
chemical activity in the system, as evidenced by the nearly
twofold increase in the normalized current at short distances
(small $L$) while at larger distances the normalized current tends
to unity. The result of the digital simulations however indicates
an unexpected feature: the current at the tip is the same for all
values of the homogeneous rate constant, $k$. This is the product
of compensation between positive feedback, both coming
from heterogeneous reaction at the substrate and from the
homogeneous reaction in the gap, and collection of the sub-
strate product at the tip. Figure 4B shows that the experimen-
tal data fits very well this $k$-independent electrochemical re-
response. Figure 4C depicts the simulated behavior of the system when $k = 0 \text{m}^{-1} \text{s}^{-1}$ and when $k = 1 \times 10^{10} \text{m}^{-1} \text{s}^{-1}$ (close to second-order diffusion-limited conditions) by showing the concentrations of O1 (Ru(NH$_3$)$_6^{3+}$), the species whose flux is respon-
sible for providing the positive-feedback response at the
tip, and of O2 (Fe(CN)$_6^{3-}$), the species responsible for the col-
lection response at the same electrode. The figure shows a
zoom-into the tip–substrate gap region, and clearly eviden-
ces that the concentration profiles in both cases are very differ-
ent. When there is a lack of reaction in the gap ($k = 0$), O1 is re-
cycled by virtue of heterogeneous reaction at the substrate
and O2 is able to freely penetrate the diffusion layer of R1, to
diffuse towards the tip, and to be collected.

In the case of high reaction kinetics ($k = 10^{15} \text{m}^{-1} \text{s}^{-1}$), the in-
terpenetration of O2 to the tip is almost zero and as hypothe-
sized earlier, the reaction front due to homogeneous reaction
(which is created halfway through the tip-substrate gap) lies
closer to the tip. This contracts the diffusion layer of O1 at the
tip and gives an increase in the feedback response at the ex-
 pense of losing the collection that would otherwise be pres-
ent, although in the same amount. Table 1 summarizes a bal-
ance sheet example of this effect.

![Figure 4. Experimental and simulated approach curves of the reversible system. Both tip and substrate are 12.5 μm in radius Au UMEs (RG = 4), 1 mM Fe(CN)$_6^{3-}$ + 1 mM Ru(NH$_3$)$_6^{2+}$ solution in 0.1 M K$_2$SO$_4$ bubbled with humid Ar and kept under Ar blanket. Approach rate: 2 μm s$^{-1}$. A) Normal approach curve. Tip potential was applied at $E_T$ ($E_{T0} = -0.4 \text{V vs. Ag/AgCl}$) and the sub-
strate held at $E_S$ ($E_{S0} = 0 \text{V vs. Ag/AgCl}$) and the substrate was kept at $E_S$ ($E_{S0} = -0.4 \text{V vs. Ag/AgCl}$) and the substrate was kept at $E_S$ ($E_{S0} = 0 \text{V vs. Ag/AgCl}$). B) Annihilation approach curve. Tip
held at $E_T$ ($E_{T0} = -0.4 \text{V vs. Ag/AgCl}$) and the substrate was kept at $E_S$ ($E_{S0} = 0 \text{V vs. Ag/AgCl}$). C) Simulated concentration profiles for the species O1 and O2 when $k = 0 \text{m}^{-1} \text{s}^{-1}$ (left) and $k = 1 \times 10^{10} \text{m}^{-1} \text{s}^{-1}$ (right). Space is zoomed-in to the tip–substrate gap. The locations of tip and substrate mi-
crodisks are indicated.; $d = 20 \text{ μm}$.

| Table 1. Balance sheet from digital simulation results showing the contribu-
tion of feedback and collection to the current read at the tip. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No reaction kinetics</td>
<td>High reaction kinetics</td>
</tr>
<tr>
<td>$k = 0 \text{m}^{-1} \text{s}^{-1}$</td>
<td>$k = 1 \times 10^{10} \text{m}^{-1} \text{s}^{-1}$</td>
</tr>
<tr>
<td>$d = 50 \text{ μm}$</td>
<td>$d = 50 \text{ μm}$</td>
</tr>
<tr>
<td>Feedback</td>
<td>2.3259 × 10$^{-9}$ A</td>
</tr>
<tr>
<td>Collection</td>
<td>1.5610 × 10$^{-9}$ A</td>
</tr>
<tr>
<td>Total current</td>
<td>3.8869 × 10$^{-9}$ A</td>
</tr>
<tr>
<td>$d = 20 \text{ μm}$</td>
<td>$d = 20 \text{ μm}$</td>
</tr>
<tr>
<td>Feedback</td>
<td>2.5512 × 10$^{-9}$ A</td>
</tr>
<tr>
<td>Collection</td>
<td>1.5610 × 10$^{-9}$ A</td>
</tr>
<tr>
<td>Total current</td>
<td>4.1122 × 10$^{-9}$ A</td>
</tr>
</tbody>
</table>

The results shown in Table 1 depict the compensation effect
that the loss of collection and gain in feedback create when
coming from a non-reactive system (left panel, Table 1), to a re-
active one (right panel, Table 1) with equal diffusion coeffi-
cients. Small differences in the fourth significant figure (sub-pi-
coampere level) do occur; however, they are experimentally in-
accessible in this situation, and may be assignable to simula-
tion error. As mentioned previously, the simulation allows us to
separate the feedback from the collection response; however,
experimentally this is not possible and it is necessary to go to
Equation (6). To do so, we performed experiments at different
values of $d$, in which the feedback (Figure 2, panel A1), collect-
ion (Figure 2, panel A2), and annihilation (Figure 2, panel A3)
responses acquired through chronoamperometry at steady
state were applied to Equation (6). Figure 5 shows representa-
tive results of this operation in which the experimental $i_{\text{act}}$ [de-
defined in Eq. (6)] is plotted against the tip–substrate distance $d$;
except for a less reproducible point at $d = 5 \text{ μm}$, the value of
$i_{\text{act}}$ is in the $10^{-11}$–$10^{-12}$ A range.

Experimentally, it would be difficult to expect the same dif-
ferences predicted by the simulation, and it is possible that
small effects created by less controllable effects, such as con-
vection, may be responsible for $i_{\text{act}}$ to be in this current range.
In the case of the result at shorter distance, it is possible that
steady-state[3,4] or transient[5] surface phenomena are responsi-
ble for the larger differences observed. The experimental re-

The Irreversible Case

Since the compensation effect on the tip response shown for the reversible case originates from changes in the collection of the substrate generated species, the elimination of the collection channel should yield a distinguishable change in the feedback response. This can be accomplished by using a irreversible reaction at the substrate, where the tip cannot collect the substrate generated species, because it does not react (for kinetic reasons) at potentials where the reversible mediator is not reduced. Other strategies for studying this case are under way in our group in which the use of a coupled technique such as electrogenerated chemiluminescence (ECL) may yield some information about similar schemes in the case of highly exergonic reactions. In this case, the annihilation reaction can be demonstrated because light emission is an indicator of chemical reactivity and because the distribution of such emission can be studied spatially, for example, at different distances between the generating electrodes, or by optical sampling of the spatial emission profile.

The results agreed well, within the experimental error, with the simulated prediction. Additional experiments done with other redox systems (see Supporting Information, Figures S1 and S2) seem to confirm this compensation effect. Moreover, other experimental strategies such as changing the symmetry of the SECM system by displacing the tip with respect to the substrate in the X or Y axis (see Supporting Information, Figure S3) or by changing the AG of the tip and/or substrate, did not produce significant differences in \( i_{\text{act}} \). Other strategies for studying this case are under way in our group in which the use of a coupled technique such as electrogenerated chemiluminescence (ECL) may yield some information about similar schemes in the case of highly exergonic reactions. In this case, the annihilation reaction can be demonstrated because light emission is an indicator of chemical reactivity and because the distribution of such emission can be studied spatially, for example, at different distances between the generating electrodes, or by optical sampling of the spatial emission profile.

The Irreversible Case

Since the compensation effect on the tip response shown for the reversible case originates from changes in the collection of the substrate generated species, the elimination of the collection channel should yield a distinguishable change in the feedback response. This can be accomplished by using an irreversible reaction at the substrate, where the tip cannot collect the substrate generated species, because it does not react (for kinetic reasons) at potentials where the reversible mediator is not reduced. In such an example, the reduced mediator can

\[
4 \text{Fe}^{II}[\text{EDTA}] + \text{O}_2 + 4 \text{H}^+ \rightarrow 4 \text{Fe}^{III}[\text{EDTA}] + 2 \text{H}_2\text{O}
\]

(21)

At high positive potentials, \((E > 1.2 \text{~V vs. Ag/AgCl})\), oxygen is evolved from the Pt substrate according to Equation (8), where A is water and \(O_{\text{irr}}\) is oxygen. The amount of \(O_2\) generated at the substrate as a function of oxidation potential and at steady-state conditions was calibrated by a collection experiment in which a Pt SECM tip was used as the probe. The collection data was fed to the digital simulations to find the concentration boundary condition to be used later on. The conditions were maintained so that gaseous \(O_2\) was not evolved. At more positive potentials the current density increased and more oxygen was produced at steady state; in the potential range used at the Pt substrate, the determined oxygen concentrations were below 0.5 mm, approximately its saturation limit in the aqueous solvent.

To make sure oxygen was reduced by \(\text{Fe}^{II}[\text{EDTA}]\) and not by the tip, a carbon fiber UME was used; this material requires a considerable overpotential to activate the electroreduction of \(O_2\), and furthermore, it is relatively inactive in acidic solutions towards the reduction of intermediate species such as hydrogen peroxide. Figure 6 shows the CV at the carbon tip for reduction of \(\text{Fe}^{II}[\text{EDTA}]\) to \(\text{Fe}^{III}[\text{EDTA}]\), which occurs at less positive potentials than the reduction of oxygen, as shown in the inset of Figure 6 (this is analogous to the case in Figure 2, panel B2). Despite the capacitive nature of the CV in Figure 6, which is typical of high roughness carbon tips, a very stable steady-state response was obtained \((i_{\text{ss}} = 0.9 \text{nA} \text{~at~} -0.5 \text{~V vs. Ag/AgCl})\) and by use of Equation (20), we calculate the diffusion coefficient of \(\text{Fe}^{III}[\text{EDTA}]\) to be \(D = 4.6 \times 10^{-6} \text{~cm}^2\text{s}^{-1}\) which is consistent with reported values.

Once the carbon tip and the substrate were aligned, the annihilation experiment was run with a fixed distance \(d = 20 \mu\text{m}\). The reaction rate was controlled by selection of the substrate potential (which determines the amount of oxygen produced). The tip potential was kept at -0.5 V, where \(\text{Fe}^{III}[\text{EDTA}]\) can be reduced to \(\text{Fe}^{II}[\text{EDTA}]\) and \(O_2\) is not reduced, while the substrate was scanned slowly \((v = 20 \text{mV}s^{-1})\) from 1.0 to 1.7 V to generate \(O_2\). Figure 7A shows the Pt tip collection curve obtained from the calibration experiment to determine the equivalent \(O_2\) concentrations at the substrate (see Supporting Information, Table 1) while Figure 7B shows the carbon tip re-
Figure 6. Carbon fiber tip \((a = 5 \mu m, RG = 10)\) CV of 1 mM Fe\^[EDTA] in 0.3 M acetate buffer (pH 4.7) solution without O\(_2\). Scan rate: \(10 \text{ mV s}^{-1}\). The inset shows a comparison of the forward scan for the reduction of Fe\^[EDTA] \((-\cdots-\)) with the background-subtracted forward scan for the reduction of O\(_2\) at the same tip in an air-saturated solution without Fe\^[EDTA] \((\cdots\cdots\cdots)\).

Figure 7. Results of the irreversible system. All the solutions were bubbled with humid Ar and kept under Ar blanket. A) Pt tip current of calibration for oxygen evolution on a Pt substrate. Both generator and collector, \(a = 12.5 \mu m, RG = 5\). Solution: 0.3 M acetate buffer, pH 4.7 (the approximate buffer capacity is 0.15 M). B) Tip current including the response due to homogeneous electron transfer between oxygen generated at the substrate and Fe\^[EDTA] generated at the tip. Tip: Carbon fiber UME \((a = 5 \mu m, RG = 10)\), Substrate: Pt UME \((a = 12.5 \mu m, RG = 5)\). Solution: 1 mM Fe\^[EDTA] in 0.3 M acetate buffer (pH 4.7). The simulation results for different values of \(k_1\) are also shown. Simulation 1, \(k_1 = 1.63 \times 10^9 \text{ M}^{-1} \text{s}^{-1}\); Simulation 2, \(k_1 = 2.20 \times 10^8 \text{ M}^{-1} \text{s}^{-1}\); Simulation 3, \(k_1 = 2.98 \times 10^8 \text{ M}^{-1} \text{s}^{-1}\); Simulation 4, \(k_1 = 4.03 \times 10^8 \text{ M}^{-1} \text{s}^{-1}\); Simulation 5, \(k_1 = 5.46 \times 10^7 \text{ M}^{-1} \text{s}^{-1}\); Simulation 6, \(k_1 = 7.39 \times 10^7 \text{ M}^{-1} \text{s}^{-1}\).

While the featured experiment is based on important assumptions, such as lack of direct reactivity of the reaction intermediates in the oxygen reduction reaction at the tip or substrate, the experiment proves that reactions of an electrogenerated species can be probed, and that a distinguishable signal at the tip can be recorded. An interesting possibility would be that of imaging the surface reactivity by substrate-generated species when the tip size, the resolution required, or the stability of the tip material represent a problem. For instance, it is known that optimal conditions for substrate generation/tip collection imaging in SECM require the spatially compromising use of large tips and values of RG\(^{31,40}\) as well as stable electrochemical reactions (e.g., many electrode materials exhibit decreasing catalytic properties over time, which results in drifting responses). In the presented mode, the monitoring of a stable tip current, characteristic of the use of a reversible mediator in the feedback mode is achieved, even at longer distances than conventional positive feedback allows.
Conclusions

We have evaluated the use of the scanning electrochemical microscope to carry out a homogeneous chemical reaction at a picoliter volume created in the gap between two SECM probes, and to detect this reaction through the use of the feedback mode. The reactants were electrogenerated, one at each probe, and the feedback signal was expected to yield information about the extent of the reaction. For a first case, called “reversible”, the experimental approach curves, both in the case of feedback and annihilation, fit the digital simulation results very well, but the homogenous electron-transfer rate of the reaction between Fe(CN)$_6^{3-}$ and Ru(NH)$_3^{2+}$ cannot be discerned. This is attributed to a compensation effect that is supported by the digital simulations and indicates that any gain in feedback from the detection of the homogeneous reaction of the generated species comes with an equal loss of collection.

A second “irreversible” case was introduced to avoid collection complications at the tip. We used Fe($^{2+}$EDTA) generated from Fe$^{3+}$EDTA at a carbon fiber UME that also has sluggish kinetics for the reduction of O$_2$. Electrogenerated O$_2$ from the substrate (Pt UME) reacted with Fe($^{2+}$EDTA) generated at the tip, producing H$_2$O and regenerating Fe$^{3+}$EDTA so as to prove the possibility of assessing homogeneous electron transfer through a distinguishable feedback-like signal at the tip. The results, supported by digital simulations, indicate that only in this irreversible case is it possible to evaluate the homogeneous reaction constant, k. An estimation using this model system shows that it is possible to estimate reaction constants over a wide working range of 4 orders of magnitude, from $10^4$ M$^{-1}$s$^{-1}$ to $10^7$ M$^{-1}$s$^{-1}$, when the tip–substrate gap is 20 µm.

Acknowledgments

We thank the National Science Foundation (CHE-0808927) and the Robert A. Welch Foundation (F-0021) for support of this research. Q. Wang thanks the National Scholarship Fund of the China Scholarship Council for support and research advisor Dr. Huibo Shao from the Beijing Institute of Technology. Helpful discussions with Fu-Ren F. Fan and Cheng-Lan Lin are also gratefully acknowledged. J. Rodríguez-López thanks Elí Lilly & Company for a Division of Analytical Chemistry of the American Chemical Society graduate fellowship; also the complementary scholarship support provided by the Secretaría de Educación Pública de Mexico and the Mexican Government is acknowledged.

Keywords: electrogeneration · electron transfer · feedback · redox chemistry · scanning electrochemical microscopy


Received: March 5, 2010
Published online on August 4, 2010