Metal Doping of BiVO₄ by Composite electrodeposition with Improved Photoelectrochemical Water Oxidation

Sung Ki Cho, Hyun S. Park, Heung Chan Lee, Ki Min Nam, and Allen J. Bard*

Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States

Supporting Information

ABSTRACT: We report that oxide composite electrodeposition can be used for the facile preparation of metal-doped BiVO₄ photoelectrodes for photoelectrochemical water oxidation. The photoactivity of electrodeposition film was improved by the addition of a small amount of tungstic acid particles during the electrodeposition. These particles are incorporated in the deposit and finally generate tungsten-doped bismuth vanadate. The suspended particles in the deposit were electrostatically attracted to the cathode and accordingly incorporated into the deposit (electrostatic deposition). WO₃ nanoparticles (NPs) can be used instead of tungstic acid, to yield a BiVO₄ with different properties. Enhanced photoelectrochemical (PEC) water oxidation was confirmed via scanning electrochemical microscopy (SECM) by detecting increased oxygen evolution with using optical fiber incorporating a ring electrode.

INTRODUCTION

BiVO₄ was reported to be an n-type photocatalyst by Kudo et al. in 1999,1 and many studies have been reported using this material for water oxidation and the PEC decomposition of organic materials.2,3 Photocatalysts for water oxidation have been extensively studied as a component in systems for water splitting to produce hydrogen as a solar fuel.4–6 Among the many candidates for water oxidation photocatalysts, metal oxides have been extensively investigated because of their good physical and chemical stability. For example, extensive studies of TiO₂ and attempts to modify its large band gap have been reported since Fujishima and Honda suggested the possible photolysis of water using TiO₂ electrodes.7–10 Other metal oxides, e.g., WO₃,11–13 Fe₂O₃,14–16 or BiVO₄ as mentioned above, have also been widely studied. However, no simple oxide has yet been discovered with sufficient efficiency and stability as a photocatalyst to achieve practical water splitting.7,17

Monoclinic BiVO₄, which has been considered as the highly active photocatalyst among its many polymorphs,18 has a band gap size of 2.4–2.5 eV, so it can absorb the visible portion of the solar energy so as to have a theoretical efficiency of 9% for solar-to-chemical conversion.19 However, the short carrier diffusion lengths and significant recombination of photogenerated electron–hole pairs limit the photoactivity of BiVO₄.20 To enhance the activity of BiVO₄ for water oxidation, there have been many studies to reduce electron–hole recombination: (a) metal dopants added into BiVO₄ to increase the donor density and increase carrier mobility, e.g., W, Mo, or P-doped BiVO₄;21–23 (b) semiconductor layers added, e.g., at the FTO/BiVO₄ interface, decrease surface recombination of an electron with a surface trapped-hole, e.g., with WO₃ and SnO₂ as the barrier layers;24–27 (c) treatments of BiVO₄ at the liquid surface, e.g., the addition of electrocatalysts, to increase the rate of water oxidation reactions.28–30 Further, the relationship between photocatalytic activity and many different preparation methods of the metal oxide has been reported.31,32

Among various preparation methods such as chemical bath deposition,33 precipitation,34 hydrothermal,35 spray pyrolysis,36 metal–organic decomposition,20 and electrochemical approaches (e.g., electrodeposition),29,37 electrodeposition has the advantage of being a simple, low cost process, that is compatible with various size surfaces, but the precise control of adding effective dopant elements to the film is challenging. In the case of electrochemically grown hematite, which is formed by the reduction of H₂O₂ in the presence of Fe³⁺, its doping with metals such as Pt, Mo, and Cr was accomplished by the reduction of the metal ion with consequent codeposition of metal in the film; these improve the photoactivity of hematite.38 However, the doping of semiconductors via metal codeposition cannot be simply applied to the preparation of semiconductors such as BiVO₄, TiO₂, and WO₃ which are generally synthesized by electrochemical oxidation reaction where the metal would not codeposit simultaneously unless the oxidized metal ion formed a precipitate on the deposit surface.

Received: August 28, 2013
Revised: October 7, 2013
Published: October 11, 2013

© 2013 American Chemical Society
23048
dx.doi.org/10.1021/jp408619u J. Phys. Chem. C 2013, 117, 23048–23056
During electrodeposition, the deposited film basically consists of elements reduced or oxidized from reactants in the electrolyte. Moreover, ions in the electrolyte can be captured in the deposited film at the few ppm level. In some cases, electrochemically inert solid particles suspended in the electrolyte can be incorporated into the electrodeposited metal or oxide film to result in the formation of a matrix composite film, which can also have improved physical properties (e.g., wear and corrosion resistance) as well as improved electrocatalytic properties, e.g., for the oxygen or hydrogen evolution reaction.

Incorporation of particles into the deposited film has been explained by their electrostatic (electrophoretic) attraction and adsorption. Particles are transported to the electrode surface by forced convection, migration, and diffusion and are subsequently adsorbed on the surface. There are thus many important factors, such as particle amount, agitation, and pH of the deposition medium, that are important in composite deposition.

Herein, we employ the composite deposition as a facile method to prepare a doped bismuth vanadate (BiVO₄) for the improved photoelectrochemical water oxidation. Recently, Seabold et al. reported an electrochemical route for the formation of BiVO₄ film by oxidation of VO²⁺ in the presence of Bi⁺³ in the plating solution followed by heat treatment. We show here that adding tungstic acid (H₂WO₄ or WO₂H₂O) or tungsten oxide to the plating solution results in the formation of W-doped BiVO₄. The photogeneration of oxygen was examined by scanning electrochemical microscopy (SECM) modified by replacing the ultramicroelectrode (UME) tip with an optical fiber. SECM can show the improved photoactivity by comparing photocurrent and the collection of photogenerated oxygen produced at the photocatalyst substrates.

EXPERIMENTAL SECTION

Materials. Bi(NO₃)₃·5H₂O (>98%, MCB Manufacture Chemists, Inc.), VOSO₄·2H₂O (17–23% V, Acros Chemicals), CH₃COONa (99.3%, Fisher Scientific), H₂WO₄ (99%, Strem Chemicals), WO₃ (99%, diameter ≤ 20 μm, Sigma-Aldrich), WO₃ nanoparticle (diameter < 100 nm, primary particle diameter 20 nm, Sigma-Aldrich), Na₂WO₄·2H₂O (99%, Sigma-Aldrich), NaH₂PO₄·2H₂O (99.5%, Fisher Scientific), Na₂HPO₄ (99.5%, Fisher Scientific), Na₂SO₄ (99.9%, Fisher Scientific) were used as received. Milli-Q deionized (DI) water was used to prepare aqueous solutions for electrochemistry experiments. F-doped tin oxide (FTO) coated glass (<14 Ω, 15 mm × 20 mm, Pilkington, Toledo, OH) was used as a substrate.

Preparation of BiWV-O Film. All of the BiVO₄ films were prepared by the previously reported electrodeposition method. The plating electrolyte was 10 mM Bi(NO₃)₃·5H₂O, 35 mM VOSO₄·2H₂O, 2 M CH₃COONa, and various amounts of H₂WO₄, and its pH was adjusted to 5 by adding concentrated HNO₃ dropwise. Electrodeposition was performed on the FTO substrate (1 cm²) at room temperature by applying 1.9 V (vs Ag/AgCl reference electrode) for 1000 s, and Pt wire (1 mm diameter) was used as a counter electrode. A gray amorphous film that consisted of Bi–V–O was formed after electrodeposition and, following annealing (550 °C for 3 h, 1 °C/min increment from room temperature), produced a yellow crystalline BiVO₄ layer.

PEC Measurements of BiVO₄ Films. The photoactivity of the deposited BiVO₄ was measured in a photoelectrochemical cell. The prepared films were used as working electrodes (0.27 cm²) exposed to electrolyte solution and irradiation. All measurements were carried out in a borosilicate glass cell with a Pt counter electrode and Ag/AgCl reference electrode. UV–vis light was irradiated through the electrolyte solution using full output of the Xe lamp with an incident light intensity of about 100 mW/cm². A 420 nm cutoff filter (WBF-3, Oriel, Darmstadt, Germany) was used for only visible irradiation. The electrolyte was 0.1 M Na₂SO₄/0.1 M Na₂SO₄ solution or 0.2 M sodium phosphate buffer (pH 7).

Characterization. Glancing incidence angle X-ray diffraction (XRD) measurements were performed by using D8 ADVANCE (Bruker, Fitchburg, WI) equipped with a Cu Kα radiation source where the incident angle was 0.4°. X-ray photoelectron spectroscopy (Kratos XPS, Kratos Analytical Ltd., UK) equipped with a monochromatic Al X-ray source was also performed. BiVO₄ films were also characterized by scanning electron microscopy (SEM, Quanta 650 FEG, FEI Company, Inc., Hillsboro, OR) and by energy dispersive spectroscopy (EDS) (XFlash Detector 5010, Bruker, Fitchburg, WI).

Pt-Ring Optical Fiber Electrode. A Pt-ring modified optical fiber was fabricated using a commercial Au-coated optical fiber (Fiberguide Industries, Inc., Stirling, NJ) as described earlier. The Au-coated optical fiber was sealed in a borosilicate glass tube as used in the preparation of UMEs for SECM experiments. The sizes of the Au-ring optical fiber used were as follows: inner diameter (dia.) of the optical fiber, 200 μm; inner diameter of the Au ring, 240 μm; outer diameter of the Au ring, 275 μm; diameter of the whole optical fiber including the glass insulator, 600 μm. Pt was electrodeposited on the Au ring electrode from a 1.0 mM K₂PtCl₆/0.1 M Na₂SO₄ aqueous solution to promote the oxygen reduction reaction.

RESULTS AND DISCUSSION

BiVO₄ Deposited with Tungstic Acid. H₂WO₄ is the hydrated form of WO₃, insoluble in neutral aqueous solutions, and electrochemically inert, so it does not affect the plating step. However, the BiVO₄ film grown with a H₂WO₄ particle suspension showed a significantly improved photocurrent. Figure 1 shows the linear sweep voltammograms of BiVO₄ films electrodeposited with and without H₂WO₄ particles under UV-vis irradiation in 0.1 M Na₂SO₄/0.1 M Na₂SO₄ solution for sulfite oxidation (Figure 1a) and in 0.2 M sodium phosphate buffer (pH 7, Figure 1b) for water oxidation. The photocurrents for the oxidation of sulfite and water increased about 2.5 times with the addition of H₂WO₄ (25 mg/L). This improvement of photoactivities is similar to that of a W-doped BiVO₄ film prepared by drop casting reported previously, and the photocurrent of the electrodeposited film is almost the same as that previously reported under the same measurement conditions.

Film Characterization. The improvement with H₂WO₄ is strongly related to W-doping, i.e., incorporation of W in BiVO₄ lattice, although composites of BiVO₄ also show improved PEC properties. Thus, the electrodeposited films were examined by several techniques. In SEM analysis (Supporting Information Figure S1), a morphological difference between BiVO₄ films grown with and without H₂WO₄ was not observed, which means that the addition of H₂WO₄ did not affect the surface sites of the photocatalytic reaction. XPS analysis (Figure 2) showed W 4f spectra from BiVO₄ films electrodeposited.
with different amounts of H₂WO₄ particles in the plating solution. According to the XPS analysis, W is in the fully oxidized state (W⁶⁺), and the peak intensity of W 4f increased with the amount of H₂WO₄ in the solution.

Incorporation of W in the film was also verified by XRD analysis (Figure 3). Clear diffraction patterns of the monoclinic scheelite-like BiVO₄ (PDF #14−0688) were obtained from the prepared films. The addition of H₂WO₄ in the solution up to 25 mg/L did not result in the formation of a separate W phase such as WOₓ or Bi₂WO₆; rather a shift and merger of peaks at about 34° and 47° were observed. These peak shifts and the relevant crystal deformations are critical evidence of W-doping in BiVO₄ film. W-doping is known to increase the carrier density of BiVO₄ as verified via Mott−Schottky plot analysis, and the same results were observed on BiVO₄ film electrodeposited with H₂WO₄ (Supporting Information Figure S2). Further addition of H₂WO₄ produces a monoclinic WO₃ secondary phase, which appears at 23° and 41.5° in the diffraction pattern as well as crystal deformation in the BiVO₄ film, so these films were identified as composites of WO₃ and W-doped BiVO₄. Diffraction peaks from monoclinic WO₃ (crystal size: 18.4 ± 0.9 nm calculated by Scherrer equation) in the deposited film became more intense as the amount of H₂WO₄ increased in the precursor solution. W incorporation also affects the UV−vis absorption spectra of films (Figure 4). The difference in the absorption of light in visible range (>420 nm) was not significant with the addition of H₂WO₄, as observed previously. The absorption at shorter wavelengths

Figure 1. Linear sweep voltammograms of BiVO₄ electrodeposited with and without H₂WO₄ in (a) 0.1 M Na₂SO₃/0.1 M Na₂SO₄ aqueous solution and (b) 0.2 M sodium phosphate buffered aqueous solution (pH 7) with chopped light under UV−visible irradiation. Intensity of light from a full xenon lamp was about 100 mW/cm², and the scan rate was 20 mV/s.

Figure 2. W 4f X-ray photoelectron spectrum of BiVO₄ films electrodeposited with various amount of H₂WO₄ in the plating solution.

Figure 3. (a) X-ray diffraction spectrum of BiVO₄ films electrodeposited on FTO substrate (+) with various amounts of H₂WO₄ in the plating solution and (b) the same with small angle range.

Figure 4. UV−visible absorption spectra obtained from BiVO₄ films electrodeposited with various amounts of H₂WO₄ in the plating solution. The thickness was around 200 nm for all electrode films.
increased due to the increase of WO$_3$ that absorbs in this region ($E_g \approx 2.7$–2.8 eV) in the composite.

Figure 5 shows the relationship between the amounts of H$_2$WO$_4$ used during the deposition and the atomic concentration of W in the film and the corresponding photocurrent. The atomic concentration was estimated from XPS and EDS analyses, and the photocurrents were measured in 0.1 M Na$_2$SO$_4$/0.1 M Na$_2$SO$_4$ at 0.4 V (vs Ag/AgCl) under UV–vis irradiation. The atomic concentrations from XPS analysis were slightly different from those from the EDS analysis, but their trends are the same, showing a gradual increase followed by saturation. The photocurrent increased sharply with the addition of H$_2$WO$_4$ and showed the highest value (0.98 mA/cm2) at around 25 mg/L, which is the maximum amount that shows W doping without the formation of separate WO$_3$ phase in the film. The atomic ratio of W to Bi at the maximum photocurrent is 0.05 from XPS or 0.1 from EDS, which are similar to the previously reported value (0.11).21,22 Beyond the maximum at 25 mg/L, the photocurrent decreased gradually, indicating WO$_3$ in W-doped BiVO$_4$ did not contribute to the further increase in the photoresponse. In fact, the visible light (>420 nm) photoresponse of the composite of WO$_3$ and W-BiVO$_4$ was similar to that of the W-doped BiVO$_4$ without the WO$_3$ phase.
BiVO₄ shows significant improvements in photoactivity and structural deformation compared to the response with H₂WO₄ indicated that the captured electrolyte amount was insignificant.

BiVO₄ Deposited with WO₃ Particles. Since, H₂WO₄ is the hydrated form of WO₃ and both have almost the same IEP, WO₃ can be a substitutive source of W doping in the plating electrolyte. At the same time, the deposition of a composite with WO₃ is easier to explain compared to mixed BiVO₄−WO₃ composite. Figure 6 shows the photoactivity and the crystal structure of BiVO₄ film electrodeposited with both WO₃ bulk particles (diameter ≤ 20 μm) and nanoparticles (NP, primary particle diameter 20 nm, which is about same as the size of WO₃ generated form H₂WO₄). One would expect nanoparticles to show better doping behavior than the larger particles with respect to uniformity of incorporation and feasibility of the penetration into the BiVO₄ crystal, and this is indeed consistent with the experimental results. The addition of large WO₃ particles did not create a significant increase in photocurrent, whereas WO₃ NP addition led to a sharp increase as well as the XRD peak shift that is critical evidence of W-doping in BiVO₄ (Figure 6a−c), resembling the addition of H₂WO₄. The difference between the films grown with WO₃ NPs and H₂WO₄ is that the BiVO₄ film with WO₃ NPs always shows a separate WO₃ phase, even when the critical doping concentration is not reached where the photocurrent is saturated. Figure 6d shows the shift values of characteristic XRD peak at around 47° as a function of the amount of H₂WO₄ and WO₃ NPs. It can be used as an indicator of doping level since it is approximately proportional to the doping level. The addition of either type of particle increased the peak shift, indicating the development of higher doping amounts. The extent of shift for WO₃ NPs was smaller than that for H₂WO₄ which indicates that the amount of doping caused by WO₃ NPs is smaller than that by H₂WO₄. This may be due to the difference in the doping procedure at the post-heat treatment step.

In fact, as-grown electrodeposited film is amorphous and consists of Bi, V, and O, whereby annealing is essential for the formation of monoclinic BiVO₄ crystal that shows good PEC behavior. When H₂WO₄ particles are embedded in the film and are treated at a high temperature, these particles start to decompose at 100 °C with the release of intercalated water molecules, thus generating very small particles at the single molecule level. These can be readily incorporated into BiVO₄ and create the doping level during the crystallization (illustrated in Figure 7a). However, WO₃ NPs do not go through such a change during annealing. NPs generally have a low melting...
point (mp) compared to bulk particles because of the high surface area/volume ratio,53 and the mp of WO\textsubscript{3} NP (≥ 20 nm) used in this study was estimated to be at least 780 °C (see Supporting Information for details), which is 200 °C above the annealing temperature used. Therefore, a reasonable doping process for WO\textsubscript{3} particle would be the atomic diffusion of W from WO\textsubscript{3} to adjacent BiVO\textsubscript{4}, which is usually used for the synthesis of single phase oxide from the mixture of oxides by sintering at high temperature (Figure 7b). As sintering is generally carried out at over 1000 °C and the W atom has a very small diffusion coefficient through a crystal lattice (\(D_0 \approx 10^{-17} \text{ cm}^2/\text{s} \text{ at } 550 °\text{C in } \alpha-\text{Fe})\),54 the annealing temperature is not expected to be high enough for W to diffuse sufficiently into BiVO\textsubscript{4}. Unfortunately, the annealing temperature cannot exceed the softening temperature of FTO (∼700 °C), and a longer annealing time (up to 9 h) did not make an observable difference in the photocurrent measured on the annealed electrodes. Because of this difficulty in the doping process using NPs, the amount of WO\textsubscript{3} added to optimize the photoelectrodes for the highest photocurrent was different from that of H\textsubscript{2}WO\textsubscript{4} (25 mg/L for H\textsubscript{2}WO\textsubscript{4} and 116 mg/L for WO\textsubscript{3}, respectively, Figures 5 and 6b). A higher amount of precursor WO\textsubscript{3} addition into the deposition solution (compared to that of H\textsubscript{2}WO\textsubscript{4}) was needed to optimize the resulting W-doped BiVO\textsubscript{4} electrodes. However, XRD analysis indicated that the addition of WO\textsubscript{3} particles in the deposition solution always yields a BiVO\textsubscript{4} film with incorporated WO\textsubscript{3}. This gives us more apparent and simple BiVO\textsubscript{4}−WO\textsubscript{3} composite compared to BiVO\textsubscript{4}−H\textsubscript{2}WO\textsubscript{4}, and the deteriorative effect of WO\textsubscript{3} embedded in BiVO\textsubscript{4} film was also observed beyond maximum doping (Figure 6b), which can be clear evidence that WO\textsubscript{3} generated from H\textsubscript{2}WO\textsubscript{4} caused a slight decline in the photocurrent of BiVO\textsubscript{4}−H\textsubscript{2}WO\textsubscript{4} (Figure 5). On the basis of this explanation, better doping behavior is expected with smaller WO\textsubscript{3} NPs, e.g., with a size less than 10 nm, as the doping source, assuming the smaller NPs melt at a lower annealing temperature than larger particles and more easily diffuse into the BiVO\textsubscript{4}.

Mo is another reported dopant in BiVO\textsubscript{4} that improves the PEC performance,22 and its doping was attempted by adding molybdic acid (MoO\textsubscript{3}·H\textsubscript{2}O, IEP \(\approx 255\)) in the plating solution. A slight increase in the photocurrent was found with its addition (Supporting Information Figure S7), but its effect was not as obvious as that of H\textsubscript{2}WO\textsubscript{4} or WO\textsubscript{3}.

Detection of Evolved Oxygen by SECM. The detection of the amount of evolved oxygen is a more direct way of demonstrating better activity for PEC water oxidation since the observed photocurrent could also include oxidation of the semiconductor material itself or reduced species in the solution. Thus, the enhanced oxygen evolution by addition of H\textsubscript{2}WO\textsubscript{4} was also analyzed by using SECM. The detection of oxygen produced from water oxidation at photoelectrodes under irradiation has been previously demonstrated by using the tip collection/substrate generation mode of SECM (TC/SG-SECM),28,45 and Cong et al.46 performed SECM in a quantitative way such as the calculation of the faradaic efficiency of oxygen evolution via numerical simulation.

The same experimental scheme presented previously46 was used in this study for oxygen detection as illustrated in Figure 8a. First, a Au ring (plated with Pt) optical fiber disk electrode (ROFDE) approaches the substrate photoelectrode. The position of the Au-ROFDE tip was controlled by an xz-stepper motor (T-LA28A, Zaber Technologies Inc., Vancouver, Canada).
Canada) on SECM stages on a photoelectrode substrate. The tip was gently touched to the substrate at initial contact, then it was retracted using the stepper motor to control the distance between the tip and the substrate. Then, with the Xe lamp as a light source, the optical fiber was illuminated leading to water oxidation on the photoelectrode with the generated oxygen collected on the Pt-plated Au ring via the oxygen reduction reaction (ORR). Pt was plated on the Au ring to promote the kinetics of the ORR, and the formation of Pt was confirmed by the emerging proton adsorption peak on cyclic voltammetry in aqueous solution (Supporting Information Figure S8). The Au ROFDE was positioned 10 μm above the BiVO₄ photoelectrode. Oxygen detection was performed in 0.2 M sodium phosphate buffer applying −0.3 V (vs Ag/AgCl) to the tip with the photoelectrode substrate at 0.4 V under light illumination for the oxygen evolution reaction (OER). The tip potential used was negative enough to ensure the diffusion limited collection of oxygen on the tip electrode, and no secondary reaction, e.g., the hydrogen evolution reaction, was observed at the potential used. Figure 8bc shows chronoamperograms of Au ring tip and BiVO₄ substrate where light illumination began at 60 s and ended at 120 s. As expected, a sharp rise in the substrate water oxidation current with the illumination was detected, and the increment of photocurrent at W-doped BiVO₄ is about three times larger than that of pure BiVO₄ which is consistent with the results of Figure 1b. Meanwhile, the product of the water oxidation, oxygen, was successfully collected on a ring electrode and appears as an increase in the reduction current in sync with the rising oxidation photocurrent. Both the observed current of OER at the photoelectrode and ORR at the tip show an instant response to the irradiation where the diffusion of produced oxygen from the substrate to the tip only takes a few tens of ms (diffusion time, \(t = d^2/2D_o \) where \(d \) is the distance between tip and photoanode, and \(D_o \) the diffusion coefficient of oxygen, \(2 \times 10^{-5} \text{ cm}^2/\text{s} \)). Moreover, the reduction current for oxygen evolution from W-doped BiVO₄ was larger than that from BiVO₄ which confirms that the increase in the photocurrent originated from the enhancement of the water oxidation. The collection of oxygen was performed at different distances between tip and BiVO₄ substrate (Supporting Information Figure S9). While the generated currents are independent of \(d \), the collected currents decreased as \(d \) increased. The results indicate that more oxygen produced at the substrate is lost to the bulk solution by diffusion when \(d \) increases. The ORR response at the tip to the instant increase of OER on the substrate also became slower due to the increase in the diffusion time as \(d \) increases. The SECM measurements show that the improved activity of W-BiVO₄ for water oxidation compared to undoped BiVO₄, and the composite deposition shown here was successfully used to make a doped metal oxide photoelectrode.

CONCLUSIONS

The addition of H₃WO₄ in the plating solution for BiVO₄ electrodeposition led to W doping in a BiVO₄ photoelectrode improving its photocatalytic activity. W incorporation and the doping-induced crystal deformation of BiVO₄ were confirmed by XPS and XRD analyses. Oxide composite deposition allowed insoluble and inert H₃WO₄ particles to be incorporated in the deposit film by electrophoretic deposition because of its negative surface charge. During heat treatment, it decomposed into small WO₃ molecules that could dope the BiVO₄. Doping using WO₃ NPs in the deposition solution was also feasible, though doping was limited because of the slower diffusion into the BiVO₄ crystal. Enhanced PEC water oxidation with H₃WO₄ was also observed by SECM analysis and the detection of evolved oxygen.

ASSOCIATED CONTENT

Supporting Information

LSVs, additional CVs, and experimental results. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(*A.J.B.*) E-mail: ajbard@mail.utexas.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the U.S. Department of Energy (DOE) Grant DE-FG02-09ER16119 and the Robert A. Welch Foundation (F-0021) for support of this research.

REFERENCES

(14) Jang, J. S.; Lee, J.; Ye, H.; Fan, F.-R. F.; Bard, A. J. Rapid Screening of Effective Dopants for Fe₂O₃ Photocatalysts with Scanning

