Iridium Oxidation as Observed by Surface Interrogation Scanning Electrochemical Microscopy

Netzahualcóyotl Arroyo-Currás and Allen J. Bard*

Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States

Supporting Information

ABSTRACT: The formation of surface oxides on most metal, including noble metal, electrodes occurs before the onset of the oxygen evolution reaction (OER). An understanding of changes in surface structure and composition caused by the oxidation process is important to the field of electrocatalysis of the OER. In this work, the surface interrogation mode of scanning electrochemical microscopy (SI-SECM) was used for the detection and quantification of −OH(ads) and −H(ads) species generated at the surface of polycrystalline iridium ultramicroelectrodes (UME) in 2 M NaOH. This system was selected because the iridium oxides are among the most effective and stable electrocatalysts for the OER. We introduce the redox pair Fe(III/II)−TEA as a mediator for stable surface interrogation at pH ≥ 12. This is the first time that SI-SECM experiments have been carried out at such an extreme pH. Monolayer coverage of −OH(ads) and −H(ads) was Qµ=1,OH = 456 ± 20 μC cm−2 and Qµ=1,1H = 224.2 ± 0.2 μC cm−2, respectively. At potentials more positive than 0.20 V, a clear change in the kinetics of the chemical reaction between Fe(II)−TEA and the hydrous oxides of Ir was observed. The kinetic results are interpreted with the aid of a simulation model based on finite element analysis (FEA). We present evidence that Ir(III), Ir(IV), and Ir(V) coexist on the surface of Ir during the OER under these conditions.

INTRODUCTION

The electrocatalytic oxidation of water is important in electricity- and light-driven water splitting devices.1 Surfaces that promote the rate of water oxidation such as noble metal2 and transition metal oxides3 have been extensively studied. In fact, the electrocatalytic activity of noble metals is now generally attributed to the formation of surface oxides prior to the onset of water oxidation (generally called the oxygen evolution reaction (OER)).4 A catalyst of particular interest is iridium oxide because of the low overpotential required to carry out the reaction (ca. 0.32 V) and because of its resistance to corrosion in a wide range of pH.3,5 However, most of the research done on iridium oxides as electrocatalysts for water oxidation has been devoted to the study of surfaces with thick oxide films. In this work, we present a different approach based on the study of the surface oxidation process starting with an oxide-free Ir(0) surface and systematically generating the incipient oxides over a potential window of 1.8 V using the surface interrogation mode of scanning electrochemical microscopy (SI-SECM).6 This approach facilitated the construction of titration curves that reveal all the surface transformations occurring on Ir under these conditions. We focused our efforts on the detection of oxide species with direct involvement in the OER.

Iridium oxide films are important in electrochemistry because of their applications to dimensionally stable anodes (DSA) for the OER,7,8 their use as pH sensors in vivo9,9,10 and their electrocatalytic activity.11 Surface characterization of iridium oxide films is typically carried out by voltammetry,12–14 spectroscopy,15,16 or a combination of both.17 However, such approaches are not useful for the quantitative study of oxides at or below monolayer coverage, θ ≤ 1, for several reasons: (1) they are not sensitive enough;18 (2) voltammetry uses the same surface to produce the incipient oxides and to detect them, potentially leading to convoluted results during analysis;19 and (3) ex-situ techniques such as X-ray photoelectron spectroscopy (XPS) require ultrahigh vacuum that can induce chemical transformations of the sample. A recent paper19 describes the use of in situ X-ray absorption spectroscopy (XAS) to study the oxidation states assumed by Ir in a thick oxide film during the OER. Although powerful, this technique still requires the use of thick oxide films. In contrast, SI-SECM offers several advantages for the study of incipient oxides at θ ≤ 1: (a) it is an in situ technique; (b) the sample electrode is decoupled from the probe electrode, minimizing unwanted perturbations of the sample during the detection step; (c) it is sensitive down to 3 to 4% monolayer coverage;20 and (d) the time between generation and quantification of adsorbates can be optimized for the detection of short-lived species.21 Furthermore, SI-SECM has been demonstrated to be a powerful tool for the study of adsorbed species and intermediates on noble metals.22–24

Received: January 5, 2015
Revised: March 24, 2015
Published: March 24, 2015
The most characteristic feature in voltammograms of anodically formed iridium oxide films is the quasi-reversible faradaic transition corresponding to Ir(III/IV), at \(E^0 = -0.40 \) V vs Ag/AgCl in 2 M NaOH (see trace 1 in Figure 1).

The determination of surface coverage on iridium requires precise control of the potential applied since thick-oxide growth occurs irreversibly at precise control of the potential applied since thick-oxide growth occurs irreversibly at potentials more positive than the Ir(III/IV) wave and \(\theta = 1 \), Ir assumes oxidation states higher than Ir(IV), previously detected by XPS and XAS. \(^{16,17} \) These higher oxidation state Ir oxides are believed to be key mediators in the electrocatalysis of the OER. Taking this into consideration, we carried out a systematic investigation experiment cannot be determined by SI-SECM. \(^{20} \) When all the oxide species have reacted with Fe(II)–TEA, negative feedback behavior is observed, and the substrate electrode returns to its initial state. Figure 2 shows a characteristic voltammogram with feedback from the titration of oxides. Trace 1 in Figure 2 is a transient under negative feedback conditions.

Mode of Operation. Scheme 1 describes the mode of operation of SI-SECM for the generation and titration of \(\text{--OH}_{\text{ads}} \) on Ir. Henceforth, \(\text{--OH}_{\text{ads}} \) represents any form of hydrous oxide present on the surface of Ir. The substrate is an Ir disk electrode surrounded by glass. The SI-SECM technique is divided in three steps as shown in Scheme 1. In the first step, a glassy carbon tip is aligned and approached to the Ir substrate, to \(d = 1-3 \) μm, under positive feedback conditions. In the second step, a potential is applied on the substrate \((E_{\text{subs}}) \) for a characteristic time, \(t_{\text{step}} \) to generate hydrous oxides, while the potential on the tip is at open circuit. In the third step, the potential of the substrate is taken to open circuit, and a cyclic voltammogram of the titrant, Fe(III)–TEA, is recorded on the tip. The potential waveform applied to the tip produces the reduced form of the titrant, Fe(II)–TEA, which diffuses toward the substrate and reacts with the hydrous oxides. Such a titration gives a transient positive feedback because Fe(II)–TEA is oxidized back to Fe(III)–TEA by \(\text{--OH}_{\text{ads}} \). These reactions are written below

\[
\text{Fe(III)–TEA} + e^- \rightleftharpoons \text{Fe(II)–TEA}, \quad E^\circ = -1.05 \text{ V} \quad (1)
\]

![Figure 1. Cyclic voltammograms of Ir UMEs (\(a = 62.5 \) μm) in 2 M NaOH. (1) First scan over a clean, mirror-polished surface. (2) Last scan after the electrode was cycled between -0.85 and 0.48 V 200 times, \(v = 20 \) mV s\(^{-1} \).](image)

![Figure 2. Cyclic voltammograms at a glassy carbon tip (\(a = 50 \) μm) in \(5 \) mM Fe(III)–TEA + 2 M NaOH solution, during a titration experiment, with \(d = 2.8 \) μm and \(v = 10 \) mV s\(^{-1} \). The substrate is an Ir electrode (\(a = 62.5 \) μm). (1) Voltammogram recorded in the absence of adsorbed species on the Ir substrate. (2) Interrogation transient obtained after generation of Ir oxides. The area under curve 2, after subtraction of the black baseline, is divided by the scan rate at the tip to obtain the charge of adsorbates titrated during the experiment.](image)

Equation 2 is a generic expression representing the homogeneous electron transfer reaction between Fe(II)–TEA and hydrous oxides \(\text{Ir}--\text{OH}_{\text{ads}}, \) with rate of reaction \(k_i \). The actual chemical formula of the oxide species produced in the interrogation experiment cannot be determined by SI-SECM. \(^{20} \)

Scheme 1. Description of the Surface Interrogation Technique for the Titration of \(\text{--OH}_{\text{ads}} \) on Ir in 2 M NaOH

\[
\begin{align*}
\text{Fe(II)–TEA} + \text{Ir}--\text{OH}_{\text{ads}} & \quad \kappa_i \quad \text{Fe(III)–TEA} + \text{Ir(0)} + \text{OH}^- \\
& \end{align*}
\]
feedback conditions. Trace 2 in Figure 2 corresponds to a transient with feedback from adsorbed species.

Experimental Section

Reagents. All solutions were prepared in 2 M NaOH with Milli-Q water (ρ ≈ 18 MΩ cm). Solutions of ferrocenemethanol (FcMeOH) 97% from Sigma-Aldrich were prepared fresh prior to each experiment and were discarded after 4 h of preparation. The solutions of Fe(III)–TEA were prepared following a procedure described elsewhere. Brieﬂy, 200 mL of deionized water was poured into a round-bottom ﬂask and bubbled with argon. After bubbling for 5 min, 4 × 10⁻⁴ moles of Fe₂(SO₄)₃·5 H₂O from Acros Organics (Fair Lawn, NJ) were added with stirring. To this solution, 4.4 × 10⁻⁴ moles of triethanolamine (TEA) 98% from Sigma-Aldrich (St. Louis, MO) were added dropwise with stirring. In a separate container, NaOH pellets (0.08 mol) were dissolved in deionized water (10.0 mL) with stirring. After the NaOH dissolved, the container was placed in a water bath to cool at 25 °C. This NaOH solution was added dropwise to the Fe(III)–ligand solutions. The volume was adjusted to 40 mL upon completion of the synthesis reaction. The complex produced, [Fe₂(TEA)(OH)]₃⁺, presents reversible electron transfer kinetics (ΔE₁/₂ = 60 mV, see Supporting Information SI-1) and is chemically stable in [NaOH] > 1 M. The formal reduction potential is E° = −1.05 V vs Ag/AgCl. The yield of the synthesis reaction was 95% as determined by steady-state voltammetry and the equation

\[
\text{% yield} = \left(\frac{i_{\text{ss,exp.}}}{i_{\text{ss,tho.}}} \right) \times 100 = \left(\frac{i_{\text{ss,exp.}}}{4nFDCr} \right) \times 100
\]

where \(i_{\text{ss}}\) is the steady-state current from the experimental voltammogram; \(n\) is the number of electrons; \(F\) is Faraday’s constant; \(D\) is the diffusion coefﬁcient; \(C\) is the bulk concentration of Fe(III) used in the synthesis; and \(r\) is the radius of the UME. The diffusion coefﬁcient was determined by the chronoamperometric method, and a value of \(D_{\text{Fe(III),TEA}} = 2.0 \times 10^{-6}\) cm² s⁻¹ was obtained. All chemicals were used as received.

Electrodes and SECM Cell. Iridium wire (99.9%, 125 μm diameter) from Alfa Aesar (Ward Hill, MA) was used to fabricate the substrate electrode by procedures described elsewhere. A 100 μm diameter glassy carbon disk electrode was fabricated according to the procedure described in section SI-2 of the Supporting Information. All electrodes were polished prior to use with alumina paste on microcloth pads from Buehler (Lake Bluff, IL) and sonicated for 15 min in deionized water. Additionally, both substrate and tip electrodes were polished to \(R_g = 1.1\). All potentials in this work are reported vs the Ag/AgCl (1.0 M KCl) reference couple. A large surface area Pt mesh (Alfa Aesar) was used as the counter electrode. All solutions used in the electrochemical cell were bubbled with argon gas for 15 min prior to experimentation and were kept under a humidified argon blanket.

SI-SECM Routine. SECM and other electrochemical measurements were carried out with a CHI920C SECM station bipotentiostat and software from CH Instruments (Austin, TX). CH Instruments software allows the use of macrocommands to program instrumental routines. We created a routine to conduct SI-SECM experiments across a potential window of 1.80 V, every 0.01 V, with no intermissions (each instrumental routine ran for approximately 14 h, see Supporting Information SI-3). The experimental conditions were as follows: the potential of the substrate electrode was stepped at \(E_{\text{sub}} = -1.00\) V for \(t_{\text{exp}} = 70\) s, after which it was immediately taken to open circuit. A resting time of \(t_{\text{r}} = 2\) s was used between generation and interrogation. Then, cyclic voltammetry experiments were carried out at the tip electrode over a potential range between −0.85 and −1.30 V at a scan rate of \(v = 10\) mV s⁻¹. The magnitude of the potential step applied on the substrate electrode was changed by \(ΔE_{\text{sub}} = 0.01\) V after each experimental run, and the overall sequence was repeated to cover the range between \(E_{\text{fin}} = E_{\text{ini}} = 1.80\) V. This is expressed algebraically as follows

\[
E_{\text{sub}}(0) = E_{\text{ini}}
\]

\[
E_{\text{sub}}(x) = E_{\text{ini}} + xΔE_{\text{sub}}
\]

\[
E_{\text{sub}}(X) = E_{\text{fin}} = E_{\text{ini}} + XΔE_{\text{sub}}
\]

where \(x\) is an integer such that \(0 < x < X\) and \(X = 180\) is the total number of increments. All experiments were carried out with 94% collection efﬁciency as determined by an independent tip generation–substrate collection (TG/SC) experiment using the couple FeMeOH/FcMeOH⁺. Charge densities were determined from the interrogation transients, by integrating the area under the curve from each titration, then dividing by both the scan rate used at the tip and the area of the Ir electrode. A ﬁlm of the native oxide was always present on the surface of the electrode before the ﬁrst SI experiment. It was removed by titrating the surface with the strongly reducing titrant generated at the tip (\(E_{\text{sub}} = \text{open circuit}\)). After removal of the native ﬁlm the electrode was kept at −1.0 V to prevent the formation of the ﬁrst incipient oxides. This was done to ensure that the ﬁrst titration experiment was carried out on a clean Ir(0) surface.

Numerical Simulations. We used numerical simulations to ﬁt our experimental results. The digital model used is described elsewhere. Briefly, the reaction Fe(III)–TEA + e = Fe(II)–TEA is considered at the tip, with forward, \(k_f\), and reverse, \(k_b\), rates of reaction deﬁned according to the Butler–Volmer formalism as

\[
k_f = k^0 \exp[-\eta_0'(E - E^0)]
\]

\[
k_b = k^0 \exp[(1 - \alpha)(E - E^0)]
\]

where the heterogeneous rate constant is \(k^0 = 6.3 \times 10^{-2}\) cm s⁻¹; \(\alpha\) is the transfer coefﬁcient (\(\alpha = 0.5\) in this work); \(f = F/RT\); \(F\) is Faraday’s constant; \(R\) is the gas constant; and \(T\) is the experimental temperature. The diffusion proﬁle of electroactive species is calculated by solving Fick’s second law in Cartesian coordinates for a two-dimensional geometry with axial symmetry. The net rate of chemical reaction between Fe(II)–TEA and −OH(ads) at the substrate electrode is deﬁned as

\[
k_{\text{net}} = \sum_{f} k_f \Gamma_{C_{\text{Fe(II)−TEA}}}
\]

where \(k_f\) is the speciﬁc rate of chemical reaction between any single oxide of Ir and Fe(II)–TEA; \(\Gamma_f\) represents the surface concentration of −OH(ads) for an iridium oxide with oxidation state \(f\); and \(C_{\text{Fe(II)−TEA}}\) is the effective concentration of Fe(II)–TEA reacting with −OH(ads).

RESULTS AND DISCUSSION

Coulometry. Monolayer Coverage of $-\text{OH}_{\text{ads}}$ and $-\text{H}_{\text{ads}}$. The first detectable oxide of Ir in 2 M NaOH is seen at about -0.88 V (red circles in Figure 3), followed by oxide growth between -0.85 and -0.47 V. In this potential range, OH$^-$ adsorbs on Ir, and the first hydrated oxides are formed.32 Oxide coverage on the Ir substrate is $\theta < 1.0$. The oxidation state of the atoms on the surface of the electrode is presumably Ir(III).15 An inflection point is reached at $E_{\text{subs}} = 0.40$ V, with $Q_{\text{fl,1,OH}} = 148 \pm 2.0 \mu$C cm$^{-2}$. The substrate potential where the inflection point occurs matches with the onset of the Ir(III)/IV wave seen in CVs of Ir UMEs in 2 M NaOH (blue trace in Figure 3). At substrate potentials more positive than -0.40 V, two processes occur simultaneously: oxide coverage progressively increases to $\theta \approx 1.0$, and Ir(III) is oxidized to Ir(IV).15,33,35 Further, a second inflection point is observed in the titration curve at $E_{\text{subs}} = 0.03$ V, with $Q_{\text{fl,1,OH}} = 456 \pm 2.0 \mu$C cm$^{-2}$. This inflection point corresponds to $\theta = 1.0$. The magnitude of the charge density at the inflection point is 100 μC cm$^{-2}$ lower than values previously reported by Dahms and Bockris26 in sulfuric acid ($Q_{\text{fl,1,OH}} = 544 \mu$C cm$^{-2}$).

In the case of $-\text{H}_{\text{ads}}$, the first detectable hydrogen atoms adsorbed on Ir are seen at about -0.70 V (green circles in Figure 3). The titration was carried out using FcMeOH as the titrant. FcMeOH is not chemically stable in 2 M NaOH for long times. However, we obtained reliable interrogation data within the first 2 h after preparation of the solutions. A Pt UME ($d = 50 \mu$m) was used as the tip. The reaction can be expressed in general as

$$\text{FcMeOH}^+ + \text{Ir} - \text{H}_{\text{ads}} + \text{OH}^- \xrightarrow{k_s} \text{FcMeOH} + \text{Ir(0)} + \text{H}_2\text{O}$$ \hspace{1cm} (5)

In the potential range from -0.70 to -1.1 V, surface coverage increases until a monolayer of $-\text{H}_{\text{ads}}$ is completed, with $Q_{\text{fl,1,H}} = 224.2 \pm 0.2 \mu$C cm$^{-2}$. This value is in agreement with previous determinations by Woods36 ($Q_{\text{fl,1,H}} = 218 \mu$C/cm2).

Potentials Where $-\text{OH}_{\text{ads}}$ and $-\text{H}_{\text{ads}}$ Coexist. The surface oxidation of Ir in 2 M NaOH commences at potentials just beyond the hydrogen adsorption region.12 In fact, $-\text{OH}_{\text{ads}}$ and $-\text{H}_{\text{ads}}$ probably coexist in that region. To characterize the potential range where both adsorbates are simultaneously present on Ir, we carried out titration experiments at substrate potentials presumably close to the potential of zero charge, pzc. The pzc for the Ir–2 M NaOH system has not been reported previously. In addition, the pzc of a bare Ir surface does not correspond to the pzc of an adsorbate-modified Ir surface under the same conditions.37 We propose that the pzc of the Ir–2 M NaOH system is located within the double-layer charging region at this pH, approximately between -0.75 and -0.85 V. This assumption seems adequate based on values previously reported from capacitance–potential curves recorded on single-crystal Ir surfaces.38 In the lower right corner of Figure 3, a region is seen where the charge from the titration of $-\text{OH}_{\text{ads}}$ (red circles) overlaps with that obtained from $-\text{H}_{\text{ads}}$ (green circles), at $E_{\text{subs}} \approx -0.78 \pm 0.06$ V. A potential region of about 120 mV exists where both adsorbates are simultaneously present on the surface of Ir. The center of such a region is labeled as pzc in Figure 3 and matches the substrate potential where a transition between hydrogen adsorption and surface oxidation is seen on the CV of Ir UMEs in 2 M NaOH (blue trace in Figure 3). This overlap region differs from that seen with Pt, where a large double-layer region separates the initial surface reduction and oxidation processes. The coexistence of Ir$-\text{OH}_{\text{ads}}$ and Ir$-\text{H}_{\text{ads}}$ at low coverages suggests that the adsorbed species are not very mobile on the surface. Additionally, we evaluated the minimum surface concentration of $-\text{OH}_{\text{ads}}$ and $-\text{H}_{\text{ads}}$ detected in our experiments, by averaging the first three data points from the red and green titration curves and calculating standard deviations. We...
obtained \(Q_{\text{min,H}} \) = 0.93 ± 0.2 \(\mu \)C cm\(^{-2}\) for \(\text{H}(\text{ads}) \) and \(Q_{\text{min,OH}} \) = 1.14 ± 2.0 \(\mu \)C cm\(^{-2}\) for \(-\text{OH}(\text{ads}) \) or \(\theta \) values of 0.01 for \(\text{H}(\text{ads}) \) and 0.025 for \(-\text{OH}(\text{ads}) \).

Iridium Oxides at \(\theta > 1.0 \). Several small waves can be observed in the cyclic voltammograms of Ir in 2 M NaOH at \(E_{\text{subs}} > 0.03 \) V, shown by black arrows in Figure 3. Such processes are not evident in the first CV scan shown in Figure 3 (same as trace 1 in Figure 1) but become obvious after generation of a thick oxide film through potential cycling of the iridium electrode, as shown by trace 2 in Figure 1. The potentials at which those waves are observed in CVs coincide with an increase in charge density detected by SI-SECM. In the range \(-0.03\) to \(0.20\) V, the slope of the titration curve presented in Figure 3 (red dots) is constant. This indicates that no faradaic process has occurred within the monolayer of oxide. Thus, the wave seen by CV in the same potential region can only be attributed to surface transformation processes, e.g., place exchange, slow oxide growth, and dehydration of \(-\text{OH}(\text{ads}) \) to \(-\text{OH}(\text{ads}) \). However, when \(E_{\text{subs}} > 0.20 \) V the magnitude of the charge density integrated from SI-SECM transients sharply increases until a third inflection point is reached at \(E_{\text{subs}} = 0.44 \) V, with magnitude \(Q_{\text{subs} > 0.44,\text{OH}} = 757 ± 2.0 \mu\text{C cm}^{-2}\). From all the data presented so far, the following relationships become evident

\[
\Delta Q_1 = Q_{\theta = 1,\text{OH}} - Q_{\theta = 1,\text{OH}} = 299 ± 2.0 \mu\text{C cm}^{-2}
\]

(6)

\[
\Delta Q_2 = Q_{\theta = 1,\text{OH}} - Q_{\theta < 1,\text{OH}} = 310 ± 2.0 \mu\text{C cm}^{-2}
\]

(7)

\[
\Delta Q_1 \approx \Delta Q_2
\]

(8)

Equations 6–8 clearly indicate that charge density determined by SI-SECM in the range 0.40–0.03 V is the same as the charge density determined in the range −0.40 to 0.03 V. Thus, the last inflection point (at 0.44 V) must correspond to a new faradaic conversion of Ir(IV) to Ir(V). The existence of Ir(V) oxides prior to the onset of the OER in sulfuric acid has been observed by XAS as reported elsewhere. 19

The black trace in Figure 3 is a nonlinear fit of our \(-\text{OH}(\text{ads}) \) titration data with three contiguous Frumkin isotherms.20,40 The green trace is a nonlinear fit of the \(-\text{H}(\text{ads}) \) data with a Frumkin isotherm. The isotherm equation used in this work is presented in Table 1. The parameters presented in Table 1 had the following definitions using \(-\text{OH}(\text{ads}) \) as an example: \(\theta = Q_{\text{subs} < \theta,\text{OH}} / Q_{\text{subs} < \theta,\text{OH}} \) is the fractional coverage of the surface at a specific value of \(E_{\text{subs}} \); \(\Gamma_2 \) is the mean activity coefficient of \(\text{OH}^- \) extracted from the literature; 41 \(n \) is the number of electrons transferred; \(F \) is Faraday’s constant; \(R \) is the gas constant; \(T \) is the absolute temperature; \(E^0 \) is the formal reduction potential of the adsorbed species, taken as the \(E_{1/2} \) in each charge transition from Figure 3; and \(g \) expresses the way in which increased coverage changes the adsorption energy \(-\text{OH}(\text{ads}) \). Parameters \(E^0 \) and \(g \) were manually adjusted to achieve the best fit. The values used as inputs in the Frumkin isotherms are presented in Table 1. Interaction parameters \(g' = -6 \) and \(g'' = -2 \) were used to fit the red and green data sets, respectively. In both cases, the negative magnitude of \(g' \) indicates repulsive interactions between the adsorbates.

Iridium Oxides after the Onset of Water Oxidation. When potentials more positive than \(E_{\text{subs}} = 0.44 \) V were applied to the Ir substrate, the SI-SECM titration recorded charge densities that are intermediate between oxides of Ir(IV) and Ir(V). In Figure 3, the charge integrated at \(E_{\text{subs}} > 0.44 \) V has an average magnitude of \(Q_{\text{subs} > 0.44,\text{OH}} = 614 ± 96 \mu\text{C cm}^{-2} \). Note that the points overlaid with the red trace in Figure 3 are at midpoint between the inflection points at \(E_{\text{subs}} = 0.44 \) V and \(E_{\text{subs}} = 0.03 \) V. This result presumably indicates that Ir(IV) and Ir(V) oxides

![Table 1. Parameters Related to the Frumkin Isotherms Shown in Figure 3](https://doi.org/10.1021/jacs.jacs00106)

Figure 4. (A) Interrogation transients obtained in the range \(E_{\text{subs}} = -1.00 \) to 0.00 V. The transient labeled as 1 was recorded under pure negative feedback conditions. (B) Interrogation transients obtained in the range \(E_{\text{subs}} = 0.20–0.61 \) V. Only a few transients are shown for clarity. In all experiments: \(t_{\text{rep}} = 70 \) s, \(t_{\text{rst}} = 2 \) s, and \(v = 10 \) mV s\(^{-1}\). Solution: 10 mM Fe(III)–TEA in 2 M NaOH. GC electrode (\(d = 50 \mu\text{m} \)).

"Independent variables used to simulate the Frumkin isotherm: \(n = 1 \); \(Y_{\text{subs}} = 0.743 \) taken from ref 41; \(F = 96,485 \) Cmol\(^{-1}\); \(R = 8.314 \) J K\(^{-1}\) mol\(^{-1}\), and \(T = 298.15 \) K."
coexist at $E_{\text{subs}} > 0.44$ V and are involved in the catalytic cycle of water oxidation in 2 M NaOH. Such a conclusion is further supported by analysis of the CV transients recorded during the titration experiments as discussed further in the following section. The same oxidation states of Ir have been observed by XAS in thick films immersed in acidic solutions during water oxidation.19

Kinetic Data. Kinetic Behavior at $\theta > 0.0$. Figure 4A presents interrogation transients recorded in the range −1.00 to 0.00 V. The first transient, labeled as 1 in Figure 4A, shows pure negative feedback because no $-\text{OH}_{\text{subs}}$ are generated on the surface of Ir at $E_{\text{subs}} = -1.00$ V. When E_{subs} is progressively stepped to more positive potentials, an interrogation peak starts to appear as the concentration of $-\text{OH}_{\text{subs}}$ increases on the surface of Ir. All the interrogation transients recorded in this potential range presented a similar shape, and the peak current progressively increased in magnitude. To better understand such a trend in oxide growth, we carried out numerical simulations and fit our experimental results with transients obtained from the FEA model. The overlap between experimental and simulated results is presented in Figure 5.

(only a few transients are shown). In the numerical model, the only variable changed was the surface concentration of $-\text{OH}_{\text{subs}}$; Γ, in eq 1. Three observations are important from these results: (1) the peak current is a function of the concentration of Ir(III) and Ir(IV) oxides on the surface of Ir; (2) the simulated rate constants k_{IV} and k_{III} have the same magnitude, $k_{\text{IV,III}} = 40 \pm 5.0$ mM$^{-1}$ s$^{-1}$; also shown in Table 2, and are constant over the potential range considered; and (3) the peak potential of the interrogation transient shifts with increasing surface coverage. Such a shift in peak potentials has been discussed in previous reports13,42 where surface oxidation of metals was studied by voltammetry and is generally attributed to adsorption/desorption kinetics of OH$^-$ and to reorganization processes of the metal surface.

Kinetic Behavior at $\theta > 1.0$. The interrogation transients obtained at potentials more positive than $E_{\text{subs}} = 0.20$ V present slower kinetics than those observed at $\theta \leq 1.0$ (Figure 4B). To better understand the nature of such changes in kinetic behavior, we modified the potential step condition at the substrate electrode from $t_{\text{step}} = 70$ s to $t_{\text{step}} = 50$ s to change the time dependence of our SI-SECM titrations. In essence, decreasing the perturbation time t_{step} limited the extent of surface reorganization (homogenization) happening before the interrogation of adsorbates. The goal was to detect individual trends of oxide growth at potentials more positive than $E_{\text{subs}} = 0.00$ V. Figure 6 shows the transients obtained after modification of t_{step}. In the figure, transient 1 is the negative feedback baseline. Transient 2 was obtained after setting $E_{\text{subs}} = 0.03$ V and presents a shape similar to those observed in Figure 4A. The rates of reaction corresponding to this transient are k_{IV} and k_{IV} as mentioned before. However, at more positive potentials the kinetic regime changes. For instance, transient 3 in Figure 6 defines the limit in E_{subs} where kinetics are only controlled by rate k_{IV}, with a shift in peak potential of 44 mV more negative (blue arrow) than transient 2. At $E_{\text{subs}} > 0.20$ V, new adsorbates are generated, Ir(V) oxides, and the net rate of reaction between the Ir(IV/V) oxides and Fe(II)–TEA is $k_{\text{IV}} + k_{\text{V}}$. A clear demonstration of this is shown in Figure 7, where mathematical fitting of the interrogation transient obtained at $E_{\text{subs}} = 0.25$ V required the addition of a second reaction rate in the FEA model

$$k_{\text{net}} = k_{\text{IV}} \Gamma V C_{\text{Fe(II)}-\text{TEA}} + k_{\text{IV}} \Gamma V C_{\text{Fe(II)}-\text{TEA}}$$

where $k_{\text{IV}} = 40 \pm 5.0$ mM$^{-1}$ s$^{-1}$, $k_{\text{V}} = 15 \pm 5.0$ mM$^{-1}$ s$^{-1}$, and $\Gamma V = 0.2 \Gamma V$ (for subscript associations see Table 2). At $E_{\text{subs}} = 0.30$ V, transient 4 in Figure 6, the contribution of $\Gamma V > 0.2 \Gamma V$ and the peak current potential shifted 30 mV more negative and increased in magnitude. The generation of Ir(V) oxides on
The substrate is demonstrated by both coulometry and kinetic results.

Kinetic Behavior at $E_{\text{subs}} > 0.44 \text{ V}$. When the Ir substrate is held at potentials where water oxidation actively occurs, the shape of the interrogation transients shows a behavior that is intermediate between Ir(IV) and Ir(V) oxides. This is shown by transient 5 in Figure 6, recorded after $E_{\text{subs}} = 0.60 \text{ V}$ was applied on the Ir substrate. In the figure, the dark red arrows point to a decrease in the peak current obtained from the surface titration and to a slight improvement in kinetics ($E_{1/2} = 20 \pm 4 \text{ mV}$ more positive, calculated from three repetitions) with respect to the green transient. The change in kinetics is small but reproducible. On the basis of the trends in reactivity observed so far, the change in kinetics at $E_{\text{subs}} = 0.60 \text{ V}$ does not indicate the appearance of a new oxide species (which would have $k < k_f$), but rather the average response of a new distribution of Ir(V) and Ir(IV) oxides on the surface of the substrate. We do not observe this behavior when carrying out the titration with $t_{\text{dep}} = 70 \text{ s}$, possibly because larger amounts of dissolved O$_2$ are produced and oxidize Fe(II)–TEA (increasing the extent of positive feedback at the tip). When the results from coulometry and the kinetic analysis are evaluated together, the OER on iridium oxides in 2 M NaOH probably follows the catalytic cycle expressed in eq 10

$$2\text{Ir(V)} + 4\text{OH}^- = 2\text{Ir(III)} + 2\text{H}_2\text{O} + \text{O}_2$$

(10)

where Ir(III) oxides generated from eq 10 are immediately converted to Ir(IV) and Ir(V) oxides at potentials $E_{\text{subs}} > 0.44 \text{ V}$.

At substrate potentials $E_{\text{subs}} > 0.60 \text{ V}$, dissolved O$_2$ accumulates in the gap between the two electrodes, and the SI-SECM titration becomes erratic. Occasionally, we observed formation of O$_2$ bubbles with consequent loss of current flow between the electrodes.

CONCLUSIONS

SI-SECM was employed to study the surface oxidation of polycrystalline iridium UMEs in 2 M NaOH. In particular, efforts were directed to understanding changes in the oxidation process prior to water oxidation. Several accomplishments are claimed in the present work:

- Fe(III/II)–TEA, a highly reducing mediator in strongly alkaline solution, was successfully used to carry out SI-SECM detection of $-\text{OH(ads)}$ on Ir in 2 M NaOH.
- The potential of zero charge of the 2 M NaOH/H$_2$O/Ir system was characterized by SI-SECM, where adsorbed H and adsorbed OH coexist in small quantities.
- Quantitative determination of the charge density corresponding to one monolayer coverage of $-\text{OH(ads)}$ and $-\text{H(ads)}$ on Ir was performed. Values of $Q_{\text{ads}-\text{OH}} = 456 \pm 2.0 \text{ μC cm}^{-2}$ for $-\text{OH(ads)}$ and $Q_{\text{ads}-\text{H}} = 224.2 \pm 0.2 \text{ μC cm}^{-2}$ for $-\text{H(ads)}$ are reported in this work.
- Quantitative characterization of the main trends in surface oxide formation was achieved.
- Finally and more importantly, coulometric and kinetic evidence is provided for the coexistence of Ir(IV) and Ir(V) oxide species during the OER at pH = 14.

ASSOCIATED CONTENT

* Supporting Information

Instructions for the fabrication of glassy carbon microelectrodes, as well as some experimental results relevant to this investigation. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: 512-471-3761. E-mail: ajbard@cm.utexas.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The information, data, or work presented herein was funded by the National Science Foundation (CHE-1111518) and the Welch Foundation (F-0021).

REFERENCES

Figure 7. Theoretical fit of the interrogation transient obtained after holding the potential of the Ir substrate at $E_{\text{subs}} = 0.25 \text{ V}$. (1) Experimental transient; (2) contribution of two species, $k_f\Gamma_{\text{v}} + k_f\Gamma_{\text{V}}$; (3) contribution of $k_f\Gamma_{\text{v}}$; (4) contribution of $k_f\Gamma_{\text{V}}$; (5) experimental transient obtained under negative feedback conditions.