High-Speed Multipass Coulter Counter with Ultrahigh Resolution

Martin A. Edwards,‡ Sean R. German,† Jeffrey E. Dick,§ Allen J. Bard,§ and Henry S. White *,†

* Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States, ‡ Revalesio Corporation, 1200 East D Street, Tacoma, Washington 98421, United States, and § Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

ABSTRACT Coulter counters measure the size of particles in solution by passing them through an orifice and measuring a resistive pulse, i.e., a drop in the ionic current flowing between two electrodes placed on either side of the orifice. The magnitude of the pulse gives information on the size of the particle; however, resolution is limited by variability in the path of the translocation, due to the Brownian motion of the particle. We present a simple yet powerful modified Coulter counter that uses programmable data acquisition hardware to switch the voltage after sensing the resistive pulse of a nanoparticle passing through the orifice of a nanopipet. Switching the voltage reverses the direction of the driving force on the particle and, when this detect—switch cycle is repeated, allows us to pass an individual nanoparticle through the orifice thousands of times. By measuring individual particles more than 100 times per second we rapidly determine the distribution of the resistive pulses for each particle, which allows us to accurately determine the mean pulse amplitude and deliver considerably improved size resolution over a conventional Coulter counter. We show that single polystyrene nanoparticles can be shuttled back and forth and monitored for minutes, leading to a precisely determined mean blocking current equating to sub-angstrom size resolution.

KEYWORDS: nanopore • nanopipet • Coulter method • resistive-pulse analysis • particle sizing • nanoparticles

Nanoparticles1 are used in a diverse range of applications, e.g., for electrocatalysis,2,3 as MRI contrast agents,4,5 and as quantum dots.6 Nanoparticle-like structures are also found in biology, such as viruses,7 vesicles,8,9 and biomacromolecules.10 Many properties of nanoparticles are highly size-dependent;1,3,5 thus accurate determination of their size is important for their applications. The methods for generating nanoparticles typically result in a distribution of differently sized particles, and even so-called “monodisperse” nanoparticles show some degree of size variation (e.g., <10%11); hence a measurement that gives the size distribution is desired.

Dynamic light scattering12 (DLS) is commonly used to calculate the particle size distribution in solution. It is underpinned by the inverse problem of deriving the size distribution from scattering correlation data, which is ill-posed, meaning assumptions on the form of the particle size distribution are necessary to fit the data.13 Analysis of electron microscopy images provides a direct measure of the size of individual nanoparticles;14,15 however, preparing samples can introduce artifacts,16 especially for soft structures,17 and instrumentation is expensive. Nanoparticle tracking analysis18 infers the size of individual particles by tracking the random walk movement of the nanoparticles and attaining a diffusion coefficient, which is then used to calculate the hydrodynamic radius of the nanoparticle using the Stokes–Einstein relationship. The optical instrumentation, however, is expensive, and the technique assumes that all analytes are spherical. Moreover, the accuracy of the measurement relies on particles remaining in the field of view for sufficient time to develop accurate estimation of the diffusion coefficient.

Coulter counters measure the size of particles in solution by passing them through an orifice and measuring a resistive pulse, i.e., a drop in the ionic current flowing between two electrodes placed on either side of the orifice.19 These sensors have been used to characterize particles from the micrometer to the molecular scale, providing information about size and concentration,20–24 surface charge,21,25,26 shape,27–30 deformability,31,32 and conductivity.33 The magnitude of the pulse is proportional to the particle’s volume and should therefore be exquisitely sensitive.
for sizing purposes. However, the technique’s resolution has been limited by the short duration of the pulse and variability in the exact path of the translocation, due to Brownian motion of the particle.

Previously we demonstrated that the net force on a nanoparticle within a conical nanopore, which arises from the combination of electroosmotic flow, pressure driven flow, and electrophoresis, can be tuned to alter the direction of travel of a nanoparticle.34 Recently we combined this concept with resistive pulse sensing to create an instrument that is able to perform multiple resistive pulse measurements of a single particle.35 Upon detecting a resistive pulse indicating the passage of a particle through the pore orifice, a computer-controlled pressure controller reversed the net force on the particle; this drove the particle back through the pore, where it was again detected and the force (pressure) reversed. Repeating the detection-switching cycle effectively “traps” the particle to a region close to the pore aperture. We demonstrated trapping of nanoparticles performing many 10’s of resistive pulse measurements on an individual nanoparticle and determining the mean resistive pulse magnitude with much higher resolution than possible with a traditional Coulter counter. A similar device using a cylindrical pore \(\sim 30/70 \) \(\mu \text{m} \) in diameter was reported by Berge and co-workers.27,36 Our nanopore-based system had some drawbacks: the control-loop that sensed and switched the pressure had a relatively slow response time, and typically \(\sim 10 \) measurements per second could be made. The response time directly affects the number of measurements that can be recorded in a given time. Indirectly it affects the stability of trapping: the random walking of a particle means that it may wander out of the sphere of influence of the applied force before the direction of the force is reversed.

In this work we present a multipass Coulter counter, illustrated schematically in Figure 1, which uses programmable data acquisition hardware to switch the voltage after sensing the resistive pulse of a nanoparticle within a conical nanopore, which arises from the combination of electroosmotic flow, pressure driven flow, and electrophoresis, can be tuned to alter the direction of travel of a nanoparticle.34 Recently we combined this concept with resistive pulse sensing to create an instrument that is able to perform multiple resistive pulse measurements of a single particle.35 Using programmable data acquisition hardware coupled with voltage switching allows us to dramatically shorten the time taken to switch the force on the particles when compared with traditional data acquisition hardware and our pressure-trapping setup. We demonstrate measurements of single particles at \(\sim 200 \) times per second, which dramatically shortens the time required to measure the distribution of the resistive pulses from a single particle. This allows us to accurately determine the mean current blockade and deliver improved size resolution. We show that single polystyrene nanoparticles can be trapped and monitored for several minutes, due to the improved switching reducing the chance of losing a trapped particle to essentially nil. This leads to an essentially arbitrary resolution measurement of blockade current, demonstrated by a precisely determined mean blocking current statistically equivalent to resolving particle radii differing by merely 31 \(\text{pm} \). While nanoparticles exhibit surface roughness much larger than the demonstrated resolution, the resolution of our volumetric measurements indicates we could differentiate fractional coverage of a monolayer over the entire particle surface. The principle of switching the voltage to measure multiple translocations has previously been reported by Gershow and Golovchenko37 and Sen and co-workers,38 who both looked at DNA translocating through symmetric nanochannels/pores.

RESULTS AND DISCUSSION

Figure 2 shows a representative short segment of \(i-t \) data resulting from trapping/sizing of a mixture of three nominally 250 \(\text{nm} \) polystyrene particles. Part a shows three sequential bursts of activity arising from the rapid switching of the voltage and the concomitant rapid changes in the current as three different particles are trapped/ sized; individual switching events are not
Figure 2. Multipass Coulter counter measurements of three polystyrene particles of 250 nm nominal radius (101 translocations each particle). $i-t$ measurements from the trapping of (a) three particles and (b) subsection of the trapping of a single particle (particle 1 in part a) on an expanded current and time range. (c) Amplitude of the current blockade for each particle and are flanked by lines at ± 3 standard errors of the mean (SEM) (99.7% confidence interval) (0.1 M NaCl with buffer, 600 nm radius pipet).

The blockades corresponding to the 101 translocations of each particle presented in Figure 2a are presented in Figure 2c. It is immediately apparent that there is considerable spread in the measured blockades for a single particle. This variation, which will be discussed in more detail later, can be attributed to redistribution of the subtly different ion concentrations inside and outside the pipet. The effect on the measured current blockade is negated by background subtraction, as detailed in the Supporting Information.

As seen in Figure 2a the time between each burst of activity is variable; this reflects the fact that particles are randomly diffusing in solution and must be close to the pipet orifice before they are influenced by the applied potential/induced fluid flow and can be trapped. The slight difference between the magnitude of the current measured at ±1 V (−240 vs 246 nA) may be down to a slight offset on the amplifier or slight differences in the internal and external concentrations due to evaporation. A charging current occurs after the voltage is switched; this is followed by a slower process that sees the current change by <1 nA over ~10 ms. The direction of this change varies from probe to probe and may be attributable to redistribution of the subtly different ion concentrations inside and outside the pipet. The effect on the measured current blockade is negated by background subtraction, as detailed in the Supporting Information.

The blockades corresponding to the 101 translocations of each particle presented in Figure 2a are presented in Figure 2c. It is immediately apparent that there is considerable spread in the measured blockades for a single particle. This variation, which will be discussed in more detail later, can be attributed to off axis vs axial translations and/or asymmetries in the particle.22,36 The exact distribution of blockades, which in this case show a higher density below the mean, will be a convolution of the likelihood of a particle translating at a particular position/orientation and the blockade for such configuration. The solid horizontal lines represent the mean current blockade for each particle and are flanked by dashed lines that are at ± 3 standard errors of the mean and give a ~99.7% confidence interval of the mean. Comparing the mean and error bounds for particles 2 and 3 demonstrate that they can be confidently distinguished by the voltage-trapping/measuring method. However, it is obvious that the individual measurements from each particle overlap to a large extent, and the particles could not be confidently distinguished based upon any one measurement, as would be performed using a conventional Coulter counter.

The control software detects a resistive pulse there is a user-defined wait period before the voltage is automatically switched to the opposite polarity (±1 V in this case); this wait allows for the complete translocation of the particle. The time between a particle entering (leaving) the pipet and the voltage being switched correlates with the time until the particle is observed leaving (entering) the pipet (see below for more details); however, as the particle is undergoing a (biased) random walk at all times, there is some variability, as we have previously shown.39

As the particle enters the pipet under a negative potential, we can assess the magnitude of the competing forces on the particle. At this negative potential, electrophoresis of the negatively charged particle (charge imbued by surface-terminating sulfate groups) acts outward; whereas forces due to the electroosmotically driven fluid flow arising from the negatively charged glass acting inward. As the particle travels inward when a negative potential is applied, we deduce that electroosmotically driven flow is the dominant force for these experimental conditions.

However, it is obvious that the individual measurements from each particle overlap to a large extent, and the particles could not be confidently distinguished based upon any one measurement, as would be performed using a conventional Coulter counter.
NaCl with butions up to and including the translocation number indi-
current blockade/mean calculated radius from translo-
clearance of the mean (SEM), which represent a
red circles represent the blockade percentage for each
for a single 250 nm nominal radius polystyrene nanoparti-
(a) The solid black line represents the mean
errors of the mean (SEM), which represent a
number, and the dashed lines represent 3 standard
represents the mean blockade up to the translocation
∼
0.2%, a range that equates to more than 4 nm (see
below for details of conversion). The solid black line
represents the mean blockade up to the translocation
number, and the dashed lines represent 3 standard
elements of the mean (SEM), which represent a ∼99.7%
confidence interval. Initially the confidence interval
rapidly decreases with an increasing number of trans-
locations; however, this decay follows a √n relation-
ship, meaning that a 4-fold increase in the number of
translocations sees a 2-fold reduction in the error
bounds. The resolution can be improved with more
translocations, although there is a small cost in terms
of an increased duration of the recording. For this
system 100 translocations give subnanometer resolu-
tion (<0.6 nm), whereas for 1000 translocations this
improves by a factor of √10 ± 3.2 to ∼0.2 nm. We have
measured single particles for minutes, where >10 000
translocations are observed and the resolution is
equivalent to <1 Å (see Supporting Information). The
equivalent radius is a statistical measure, which as-
sumes the particle to be perfectly spherical; however,
it would allow the resolution of miniscule differences
between particles that will have some intrinsic non-
ideality (roughness/asphericity).

Figure 4 shows two histogram plots derived from
trapping/sizing a sample of 250 nm nominal radius
polystyrene particles. Part a shows histograms of per-
centage current blockade each relating to 101 measure-
ments of eight different individual particles. A total
of 101 measurements was chosen, as it is sufficient to
resolve the particle radius to ∼0.6 nm (see Figure 3).

The variation in the measured blockades is much larger
than the instrumentation noise and is largely explained
by the variation of the position of the particle as it trans-
locates (axial vs off-axis). This variability has been stu-
died theoretically for cylindrical pores, and the ∼15%
variability we observe is of comparable size.40 These
histograms are not accessible to a conventional Coulter
counter measurement, where each particle is measured
only once. Not only does this allow us to determine the
mean blockade current with high precision, but it also
allows us to assess the variability of single measure-
ments. Ordinarily the variability would be a combina-
tion of variability between particles and variability due
to the measurement, whereas through the trapping–
measuring we are able to eliminate the former and
assess the latter.

The histogram in Figure 4b represents the size dis-
tribution of the population of 100 particles, each of which
was measured 101 times. The percentage blockade
histograms of eight are shown in part a (the remaining
92 are available in the Supporting Information). The
mean value of each blockade was then converted to a
size by

\[
\%\Delta i = kr^3
\]

(1)

where %Δi is the percentage that the current is blocked
at the peak of the translocation, r is the radius of the
particle, and k is a constant related to the geometry of
the pipet, which is reasonable to use when the electro-
lyte concentration is high, where electroosmotic and ion
current rectification effects are minimal.41 k was de-
termined through defining the population mean to be
equal to the mean value measured by scanning electron
microscopy (241 nm, see Supporting Information for details). This value differs from the manufacturer’s nominal value (250 nm), but is within their expected tolerances. While a slight discrepancy in this value would shift this distribution slightly, it would not change the resolution or width of any distributions derived to any significant degree. The spread of the distribution measured by voltage trapping (2.3 nm standard deviation) represents an upper limit on the true spread, as some convolution occurs from measurement uncertainty. However, through measuring each particle 101 times, this contribution is small (~0.6 nm). Analysis of scanning electron microscopy images (see Supporting Information) determined the particle size distribution to have a 3 nm standard deviation, which compares favorably with the distribution voltage trapping/measuring. If we consider the inherent spread in resistive pulse amplitudes from individual particles (>4 nm), it would be impossible to resolve such a distribution without a multipass system.

In acquiring the data presented in Figure 4, we never lost a particle due to diffusion; that is, a particle never random walked beyond the region in which we could retrap it until we chose to drive it deep into the pore (after 101 translocations). This reassures us that the possibility of particle switching, i.e., the trapped particle leaving the trapping zone concurrently with a second particle entering, is essentially zero. This is not to say that second particles did not diffuse into the trap; however, in such situations this was immediately apparent as two separate resistive pulses, and those data were not included in the analysis (see Supporting Information for more details). Additionally, some particles were lost due to triggering failures and were also not used in the analysis (see Supporting Information for details).

Figure 5 shows the results from voltage trapping/measuring of a mixture of polystyrene particles of 250 and 100 nm nominal radii. Each particle was trapped/measured for 101 translocations before being driven deep into the pipet; the subsequent particle entered from outside the pipet, ensuring that it was a different particle. Figure 5b shows the current time traces from two particles, one with 250 nm nominal radius and one with 100 nm nominal radius, on an expanded current scale. It is immediately apparent that each particle blocks the current by a different amount, as would be expected from eq 1. Nonetheless, we are able to trap and measure both particle sizes with the same pipet and with the same parameters (trigger thresholds, etc.).

In Figure 5c the percentage blockade arising from each translocation of the six particles in part a is presented. As is expected, the two populations of particle sizes (250/100 nm nominal radius) are clearly distinguished; moreover, we are able to distinguish the particles within those individual populations. The absolute variability is different between the two populations, with the less blocking, 100 nm nominal radius particles (3, 4, and 6) being spread over a range of 0.15% of the baseline current, whereas the 250 nm nominal radius particles are spread over ~0.4%. However, when we consider the relative variability, it is the smaller particles that show more variability. As the 100 nm particles block only ~0.25% of the current, the peak heights can be affected by instrumentation noise or by any uncertainty in fitting the baseline current.

The radius of each particle was calculated as previously, by setting the mean radius of the larger particles to their value as measured by electron microscopy and then using eq 1. In doing this, the derived radii for the
smaller particles have a mean of \(\sim 117 \text{ nm} \), which is close to 108 nm measured by microscopy. This slight difference may be attributable to components of the current that come from electroosmotic flow and which cause a deviation from eq 1. An interpretation of this is that for the conditions in our study \(k \) in eq 1 is not constant, but rather is a function that weakly depends on the particle size (\(\sim 10\% \) change between the two particle sizes).

The software for the trapping/measuring of particles allows the user to decide how long to wait after detecting a translocation before switching the potential; different wait durations can be chosen for translocations at opposite polarities. In Figure 6a a particle enters the pore under a negative potential. When the absolute value of the current gradient (\(\text{dI/dt} \)) is greater than a threshold value, this triggers a timer to initiate; switching occurs when the timer expires (after \(\sim 2.5 \text{ ms} \) in the schematic). As shown in the figure, we define \(t_{\text{wait}} \) as the time from the peak of the resistive pulse until the switching time. \(NB \): This may differ from the value the user chooses, as triggering can occur part way through a translocation. \(t_{\text{return}} \) is the time from the potential switching until the particle is redetected. \(t_{\text{return}} \) depends strongly on \(t_{\text{wait}} \), the direction of travel (out of or into the pipet), and the particle size, as shown in Figure 6b. The crosses at \(t_{\text{wait}} = 6–7 \text{ ms} \) represent periods when the particle was outside the pipet. We see a spread in the values of \(t_{\text{return}} \), which is due to the random walk that particles undertake. The black points represent particles of 100 nm nominal radius; they show a considerably wider distribution than the 250 nm nominal radius particles that are shown in red despite switching occurring at a similar time. We attribute this broadening to the higher diffusion coefficient of the 100 nm nanoparticles. The circles on this plot represent a period when the particle was inside the pipet. Again we notice that for similar values of \(t_{\text{wait}} \), the variance of the 100 nm (black) particles is greater. However, we notice that even though the particles were inside the pipet for considerably longer, the variation in \(t_{\text{return}} \) is actually significantly less. The electric field and electroosmotic flow drop off more slowly within the pipet than outside and so can dominate mass transport; furthermore diffusion within the pipet is predominantly one-dimensional, in contrast to three-dimensional diffusion outside. If we consider the black circles, which represent 100 nm particles that have been transported inside the pipet, we observe two things. First, for increasing values of \(t_{\text{wait}} \), we see increasing values of \(t_{\text{return}} \) and that the relationship between the two values is approximately linear. This fits intuitively with the idea that the longer the value of \(t_{\text{wait}} \), the further the particle is allowed to travel into the pipet before the voltage is switched and thus the further it must travel before exiting the pipet. \(NB \): While in this case the gradient is around 1, which is indicative of no pressure-driven flow, pressures within the system can cause it to deviate from this value. Second, one can observe that as \(t_{\text{wait}} \) increases, there is a broadening in the value of \(t_{\text{return}} \). Again, this is in accord with the idea that the particle has more time to diffuse.

Figure 6 reinforces the observation that one is more likely to “lose” a particle when it is outside the pipet than inside (see Supporting Information). It also highlights the importance of rapid switching of the forces (potential) to achieving consistent, stable trapping of particles.

CONCLUSIONS

In this work we demonstrated a high-speed voltage-trapping/measuring Coulter counter that allows us to measure nanoparticles in solution to an essentially arbitrarily high resolution. The resolution demonstrated in this work should be sufficient to resolve the difference in radius from a partial monolayer coverage of a particle. Note that, regardless of the accuracy of the calibration, we expect to resolve a difference in blockade currents. When blockade currents are converted to equivalent radii, errors in calibration will be reflected in errors in the absolute values of radii.

We demonstrated this technique with polystyrene nanoparticles; however, there is no inherent restriction...
on the particle material. Electroosmotic flow, which occurs due to the charged groups on the glass wall, will occur and interact with any nanoscopic particulates, regardless of surface charge, conductivity, etc. Thus, one could conceivably use it to measure uncharged metallic nanoparticles, nanoscopic biological entities, or even emulsions. For conditions different from those used in this work, such as nonspherical particles, deformable particles, or lower ionic strength solutions, different—volume relations different from eq 1 may be necessary. However, the premise of multiple measurements improving resolution and allowing the characterization of variability remains.

In this work we demonstrated trapping of 100 nm particles with angstrom resolution; however, ongoing work in our laboratory, which will be reported in the near future, is demonstrating the extension of this capability to smaller metallic nanoparticles. A good signal-to-noise ratio for resistive pulse measurements can be maintained by shrinking the pipet size (see, for example, ref 34; 4 nm radius particles), where angstrom resolution would represent a larger change in the percentage blockade. However, smaller particles have higher diffusivities, which will likely make them more challenging to trap/measure.

For the system studied in this work there is a limitation on the maximum rate of measuring at around 200 translocations/s (see Supporting Information for an example i–t trace), which already allows for a rapid determination of size distributions. In this work the limit was due to the finite duration of the translocation events, which could easily be shortened through using an amplifier with a higher voltage range that would effect larger forces on the particle.

The samples studied in this work are stable over time; thus we did not observe any changes in the average percentage blockade. However, the ability to trap a particle for minutes delivers the exciting possibility that one could track the change in the size of a particle as a function of time with subsecond time resolution. We anticipate this to be of interest in applications such as nanoparticle synthesis and colloidal formation.

Nanoscale glass or quartz pipets, such as those used in this work, are the scanning probe in the scanning ion conductance microscope (SICM). Coupling voltage-trapping/measuring with the distance control capabilities of an SICM would open up the exciting possibility to precisely position a pipet over a characterized area of a surface and to deliver, on command, a characterized nanoparticle or other nanoscopic particulate. A similar concept, but lacking the trapping element, was recently reported by Mirkin and co-workers.

This work has focused on the mean value of the resistive pulse amplitude from which the particle radius can be derived. Previous work using a standard Coulter counter has shown the duration of the translocation to be related to a particle’s surface charge. Thus, one should be able to use a voltage-trapping/measuring Coulter counter to discriminate both surface charge and size, which will both benefit from the reduced uncertainty from repeated measurements. While this work used eq 1 to relate the blockage current to radius, and in doing so implicitly assumed a spherical particle, Coulter counters are sensitive to the orientation of nonspherical particles. We anticipate that the multipass Coulter counter should be sensitive to this either through larger variation in the peak blockage current or through resolving the tumbling of particles in each pass.

The pore in this work is at the end of a glass pipet; however, electroosmotic flow is a phenomenon that also occurs in channels of micro-nanofluidic devices. Thus, it should be possible to implement the strategy presented in this work as part of such a device, with the possibilities of parallelization and batch production being just some of the possible benefits.

METHODS

Particle sizing measurements were performed in a solution of 50 or 100 mM NaCl (Fisher) with 10 mM PBS and 0.1 vol % Triton X100 in ultrapure water (Barnstead Smart2Pure, Thermo Scientific); the NaCl concentration for each measurement is reported with the data. The solution was adjusted to pH 7.2 with NaOH and filtered through a 0.1 μm filter (Durapore PVD, Millipore) prior to use. Particles were purchased from Polyscience Inc. (Lake Shore, PA) and were sonicated and added to the external solution to give concentrations of 5 × 10⁷ to 2 × 10⁸ particles/mL. Measurements were performed in a 1 mL volume in an Eppendorf tube.

Pipets were prepared by pulling 1.0 mm outer diameter 0.7 mm inner diameter quartz capillaries (Q100-70-7.5, Sutter) in a P-2000 laser puller (Sutter). The capillaries were first washed inside and out with ultrapure water and dried with N₂. A single line program was used with the following parameters: heat 439–465, filament 1, velocity 30, delay 145, pull 175, where the heat parameter was chosen to give a suitable pipet size. Pipets were backfilled using a Microfil (MF28G, World Precision Instruments). A small air bubble that remained trapped at the tip of the pipet was pushed out by back-connecting the pipet to a N₂ cylinder and slowly ramping the pressure while the tip of the pipet remained in water. The pressure at which the air bubble exited the pipet was used to size the pipet as described in ref 50. The filled pipet was mounted in a pipet holder (MDW-M10FL, Warner) containing an Ag/AgCl wire. A Ag/AgCl wire was also used as the external electrode.

All particle trapping experiments were performed inside a Faraday cage. The voltage was applied and current recorded by a patch clamp amplifier (Heka, EPC10 USB), which was connected to field programmable gate array data acquisition card (FPGA card, PCie-7852R, National Instruments) through the analog channels of both components. Details on the filter/gain settings, which were chosen to avoid distorting peak shapes/digitization, are available in the Supporting Information.

The program running on the FPGA card, written using the LabVIEW FPGA module, continually calculated the derivative of the current (calculated from a least-squares fit) and instigated a voltage switching protocol when the magnitude was above a user-defined threshold level. Data were passed to a LabVIEW...
program running on the computer that presented the data to the user in real time and which communicated with the FPGA card to update the settings of the voltage switching protocol. More details of the software and switching protocol are available in the discussion of Figure 2, and a discussion of triggering is included in the Supporting Information. The data acquisition/transfer part of the software was based, in part, on similar functions in the Warwick Electrochemical Scanning Probe Microscopy software suite51 (University of Warwick). The data acquisition/transfer part of the software was based, in part, on similar functions in the Warwick Electrochemical Scanning Probe Microscopy software suite51 (University of Warwick). The data acquisition/transfer part of the software was based, in part, on similar functions in the Warwick Electrochemical Scanning Probe Microscopy software suite51 (University of Warwick).

Acknowledgment. This work was supported by AFSOR MURI FA9550-14-1-000. S.R.G. was supported by Revalesio Corporation. Thanks to R. Polson for assistance with scanning electron microscopy. This work made use of University of Utah shared facilities of the Micron Technology Foundation Inc. Microscopy Suite sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) initiative of the State of Utah. We are thankful to P. Unwin of the University of Warwick for the permission to use and modify WEC-SPM software. J.E.D. acknowledges the National Science Foundation Graduate Research Fellowship (Grant No. DGE-1110007).

Supporting Information Available: The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05554.

Additional material showing replicates of the data shown in the figures and/or additional examples on expanded current/time axes, including trapping/measuring at high frequency and for extended time periods; more details of methods used to analyze the data and of the trapping/acquisition settings; scanning electron micrographs of the particles along with image analysis to determine their size distributions; examples of typical modes of failure of the technique and how to adjust the trapping parameters to best avoid them. (PDF)

REFERENCES AND NOTES

