Supporting Information

Detection of CO₂⁻⁻ in the Electrochemical Reduction of Carbon Dioxide in DMF by Scanning Electrochemical Microscopy

Tianhan Kai, Min Zhou, Zhiyao Duan, Graeme A. Henkelman, Allen J. Bard*

Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

* Corresponding author, Phone: (512) 471-3761, email: ajbard@mail.utexas.edu

Table of Contents	Page
Mercury deposition at a Pt UME (Figure S1)	S2
CVs and SECM approach curve of UMEs (Figure S2)	S3
Comsol simulation parameters and related boundary conditions (Figure S3)	S4
Collection curves of CO ₂ using different SECM substrates (Figure S4)	S6
DFT calculations (Figure S5)	S7
Capacities Measurements with different electrolytes (Table S1)	S8
CVs of CO_2 . ⁻ obtained with TEAPF ₆ as electrolyte (Figure S6)	S9

Figure S1. Chronoamperogram of 10 mM Hg₂(NO₃)₂ at a Pt UME of 5 μ m radius (*a*) in an aqueous solution containing 0.1 M KNO₃ and 0.5% HNO₃. The potential was held at -0.1 V vs Ag/AgCl.

Figure S2. (A) CVs of 1 mM decamethylferrocene (DMFc) in DMF containing 0.1M TBAPF₆ at a a = 5 µm hemisphere-shaped Hg/Pt UME (Black curve) and a a = 12.5 µm Au disk UME (Red curve), respectively. The scan rate was 20 mV·s⁻¹. (B) Positive feedback approach curve (Red curve) for 1 mM DMFc in DMF containing 0.1 M TBAPF₆ obtained with a a = 5 µm hemisphere-shaped Hg/Pt UME (SECM tip, RG = 5) and a a = 12.5 µm Au disk UME (SECM Substrate). The tip and substrate potentials were held at 0.25 V and -0.15 V, respectively. A theoretical approach curve (Black dotted curve) was obtained from COMSOL simulation.

Figure S3. Geometry and related parameters for the diffusion simulation in the operation of SECM, where a hemisphere-shaped tip approaches an inlaid disk substrate.

The steady-state diffusion problem for tip generation/substrate collection (TG/SC) mode of SECM is formulated for the diffusion-controlled reduction of CO₂ (species 1) at the hemisphere-shaped tip and oxidation of CO₂·⁻ (species 2) at the inlaid disk substrate (Figure S3). CO₂·⁻ take a homogenous second-order dimerization in the solution with a rate constant of k_c , as shown in

$$\operatorname{CO}_{2} \stackrel{-}{\cdot} + \operatorname{CO}_{2} \stackrel{-}{\cdot} \stackrel{k_{c}}{\longrightarrow} \operatorname{C}_{2} \operatorname{O}_{4}^{2-}$$
(1.1)

Here, the as-described diffusion problem can write in cylindrical coordinates as:

$$\frac{\partial^2 c_1}{\partial r^2} + \frac{1}{r} \frac{\partial c_1}{\partial r} + \frac{\partial^2 c_1}{\partial z^2} = 0; \ 0 \le r < rs, \ -lt < z < at + d + ls$$
(1.2)

$$\frac{\partial^2 c_2}{\partial r^2} + \frac{1}{r} \frac{\partial c_2}{\partial r} + \frac{\partial^2 c_2}{\partial z^2} = \frac{k c_2^2}{D_2}; \ 0 \le r < rs, \ -lt < z < at + d + ls$$
(1.3)

where r and z are the spatial coordinates and $c_i(r, z)$ is the concentration of the solution species.

The related boundary conditions are listed as follows:

$$c_{1} = 0, D_{1} \frac{\partial c_{1}(r, z)}{\partial n} + D_{2} \frac{\partial c_{2}(r, z)}{\partial n} = 0; \quad \text{(tip surface)}$$
$$0 \le r \le at, \ z = \sqrt{at^{2} - r^{2}} \quad (1.4)$$

$$c_{2} = 0, D_{1} \frac{\partial c_{1}(r, z)}{\partial n} + D_{2} \frac{\partial c_{2}(r, z)}{\partial n} = 0;$$
(Substrate surface)
$$0 \le r \le as, \ z = at + d$$
(1.5)

where $\partial c_i(r, z) / \partial n$ is the normal derivative and D_i is the diffusion coefficient of the species.

$$\frac{\partial c_1(r,z)}{\partial n} = \frac{\partial c_2(r,z)}{\partial n} = 0;$$

$$at < r \le rgt, \ z = 0;$$

$$-lt \le z \le 0, \ r = rgt; \qquad \text{(Insulating surface)} \qquad (1.6)$$

$$as < r \le rgs, \ z = at + d;$$

$$at + d \le z \le at + d + ls, \ r = rgs;$$

$$c_1 = 1, \ c_2 = 0;$$

$$-lt \le z \le at + d + ls, \ r = rs;$$

$$rgt < r \le rs, \ z = -lt;$$

$$rgs < r \le rs, \ z = at + d + ls \qquad (1.7)$$

$$rgs < r \le rs, \ z = at + d + ls$$

$$\frac{\partial c_1(r,z)}{\partial n} = \frac{\partial c_2(r,z)}{\partial n} = 0; \ r = 0, \ at \le z \le at + d \quad \text{(Axis of symmetry)} \qquad (1.8)$$

The collection efficiency is defined as the ratio of the integrated diffusion flux of species 2 over the substrate surface to the integrated diffusion flux of species 1 over the tip surface.

Figure S4. CVs of CO₂·⁻ obtained at $a = 12.5 \ \mu m$ Au (Black), Pt (Red) and Hg/Au (Blue curve) substrates in DMF containing 0.1 M TBAPF₆, respectively. SECM tip was a $a = 5 \ \mu m$ Hg/Pt UME and tip potential (*E*_T) was held at -2.8 V vs Pt/PPy ($d = 800 \ nm$).

Figure S5. (A) Potential energy diagram of $CO_2 + e^-$ (Blue curves) and $CO_2 \cdot -$ (Red curve) along the reaction coordinate of CO_2 bending. The potential energies of $CO_2 + e^-$ are evaluated at 0 V and -2.4 V, respectively. (B) The energy barrier required to across from $CO_2 + e^-$ to $CO_2 \cdot -$ as a function of applied electrode potentials.

 Table S1: Electrolyte and double layer capacitance for 0.1 M different electrolyte solutions at the Hg/Pt-DMF interface

Supporting Electrolyte	Double layer capacitance C, µF cm ⁻²	
0.1 M TEAPF ₆	10.0	
0.1 M TPAPF_6	7.7	
0.1 M TBAPF_6	7.0	
0.1 M THeATPB	5.8	
0.1 M TOABr	6.7	

^a Data were obtained by sweeping the potential within the double layer region from -1.5 V to -2.0 V vs Pt/PPy.

Figure S6. The collection of CO₂·⁻ (Black curve) obtained with 0.1 M TEAPF₆ as the supporting electrolyte at the SECM substrate (a $a = 12.5 \ \mu m$ Hg/Au UME). E_T was held at -2.65 V, while E_S was swept from -2.1 V to -1.2 V ($d = 1 \ \mu m$). i_T (Red curve) was obtained with a $a = 5 \ \mu m$ Hg/Pt UME, as shown on the top.