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Figure S1. Chronoamperogram of 10 mM Hg2(NO3)2
 at a Pt UME of 5 µm radius (a) in an aqueous 

solution containing 0.1 M KNO3 and 0.5% HNO3. The potential was held at 0.1 V vs Ag/AgCl. 
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Figure S2. (A) CVs of 1 mM decamethylferrocene (DMFc) in DMF containing 0.1M TBAPF6 at a a = 5 

µm hemisphere-shaped Hg/Pt UME (Black curve) and a a = 12.5 µm Au disk UME (Red curve), 

respectively. The scan rate was 20 mV·s1
. (B) Positive feedback approach curve (Red curve) for 1 mM 

DMFc in DMF containing 0.1 M TBAPF6 obtained with a a = 5 µm hemisphere-shaped Hg/Pt UME 

(SECM tip, RG = 5) and a a = 12.5 µm Au disk UME (SECM Substrate). The tip and substrate 

potentials were held at 0.25 V and 0.15 V, respectively. A theoretical approach curve (Black dotted 

curve) was obtained from COMSOL simulation. 
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Figure S3. Geometry and related parameters for the diffusion simulation in the operation of SECM, 

where a hemisphere-shaped tip approaches an inlaid disk substrate. 

The steady-state diffusion problem for tip generation/substrate collection (TG/SC) mode of SECM is 

formulated for the diffusion-controlled reduction of CO2 (species 1) at the hemisphere-shaped tip and 

oxidation of CO2· (species 2) at the inlaid disk substrate (Figure S3). CO2· take a homogenous second-

order dimerization in the solution with a rate constant of kc, as shown in 
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Here, the as-described diffusion problem can write in cylindrical coordinates as:  
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where r and z are the spatial coordinates and ci(r, z) is the concentration of the solution species.  

The related boundary conditions are listed as follows:  
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where ( , ) /ic r z n   is the normal derivative and 
iD  is the diffusion coefficient of the species. 
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The collection efficiency is defined as the ratio of the integrated diffusion flux of species 2 over the 

substrate surface to the integrated diffusion flux of species 1 over the tip surface. 
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Figure S4. CVs of CO2· obtained at a = 12.5 µm Au (Black), Pt (Red) and Hg/Au (Blue curve) 

substrates in DMF containing 0.1 M TBAPF6, respectively. SECM tip was a a = 5 µm Hg/Pt UME and 

tip potential (ET) was held at 2.8 V vs Pt/PPy (d = 800 nm). 
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Figure S5. (A) Potential energy diagram of CO2 + e (Blue curves) and CO2· (Red curve) along the 

reaction coordinate of CO2 bending. The potential energies of CO2 + e are evaluated at 0 V and 2.4 V, 

respectively. (B) The energy barrier required to across from CO2 + e to CO2· as a function of applied 

electrode potentials.  
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Table S1: Electrolyte and double layer capacitance for 0.1 M different electrolyte solutions at the 

Hg/Pt-DMF interface 

Supporting Electrolyte Double layer capacitance C, µF cm2 

0.1 M TEAPF6 10.0 

0.1 M TPAPF6 7.7 

0.1 M TBAPF6 7.0 

0.1 M THeATPB 5.8 

0.1 M TOABr 6.7 
a Data were obtained by sweeping the potential within the double layer region from 1.5 V to 2.0 

V vs Pt/PPy. 
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Figure S6. The collection of CO2· (Black curve) obtained with 0.1 M TEAPF6 as the supporting 

electrolyte at the SECM substrate (a a = 12.5 µm Hg/Au UME). ET was held at 2.65 V, while ES was 

swept from 2.1 V to 1.2 V (d = 1 µm). iT (Red curve) was obtained with a a = 5 µm Hg/Pt UME, as 

shown on the top.  




