Supporting Information

High performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites

Li Ji^{1,2,*,‡}, Hsien-Yi Hsu^{2,3,4*,‡}, Jack C. Lee¹, Allen J. Bard² and Edward T. Yu^{1,*}

Materials and Methods

Perovskite precursor preparation

Methylamine iodide (MAI) was prepared by reacting methylamine, 33wt% in ethanol (Sigama-Aldrich), with hydroiodic acid (HI) 57wt% in water (Sigma-Aldrich) at room temperature. After drying at 100 °C, white powder was formed, followed by overnight drying in a vacuum oven. To form the precursor solution, MAI and PbI2 (Sigama-Aldrich) were dissolved in anhydrous N,N-Dimethylformamide (DMF) at a 1:1 molar ratio.

Perovskite deposition

To form the perovskite layer, the prepared precursor was spin-coated on KCl(001) substrate at 2000rpm in a Ar-filled golvebox. After the spin-coating, the films were annealed at 100 °C for 20 mins.

Photodetectors fabrication

Au metal contacts were deposited directly onto perovskite thin film by e-beam evaporation through a stainless steel shadow mask. The temperature was monitored and kept under 40 °C during deposition.

Characterizations

¹Microelectronics Research Center, Department of Electrical and Computer Engineering,

²Center for Electrochemistry, Department of Chemistry and Biochemistry, the University of Texas at Austin, Austin, Texas 78712

³School of Energy and Environment, City University of Hong Kong, Hong Kong, China

⁴Shenzhen Research Institute of City University of Hong Kong, Shen Zhen, 518057, China

^{*}Corresponding authors: nmgjili@utexas.edu; etylab@ece.utexas.edu; sam.hyhsu@cityu.edu.hk

Scanning electron microscopy (SEM)

A field emission scanning electron microscopy system (Zeiss) was used to acquire SEM figures. The beam voltage is 2 kV, to minimize electron induced damage.

Photoluminescence measurements and fits

Steady-state and time-resolved PL measurements were acquired using a time correlated single photon counting setup. Film samples were photoexcited using a laser head pulsed, providing < 200ps pulses with the fluence of $\sim 30 \text{ nJ/cm}^2$.

Raman Spectroscopy

The Raman measurements were performed with excitation lines of 532 nm. Laser power density was 1 mW.

X-ray diffraction (XRD)

XRD were obtained using a double-axis high resolution X-ray diffractometer, using $CuK\alpha(\lambda = 1.5405 \text{ Å})$ radiation source. The x-ray generator was set to 40 kV and 45 mA.

Electron back scattered diffraction (EBSD)

The EBSD patterns were obtained in a SEM system (Zeiss Neon 40 FE-SEM) equipped with an EDAX (Mahwah, NJ) APEX 2 integrated EDS and EBSD system, by focusing the electron beam onto the sample surface at a tilt angle of 70° with respect to the horizontal. The scanned data were post analyzed using the EDAX TSL OIMTM 5.0 software.

SEM characterizations

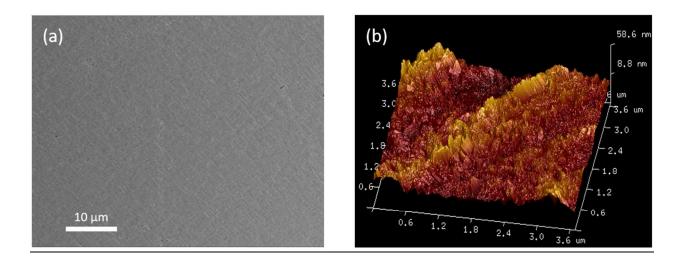


Fig. S1. (a) SEM and (b) AFM characterization of epitaxial MAPbI3 films

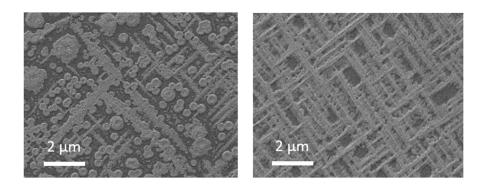


Fig. S2. Un-optimized processing condition, resulting in large pin-holes and big clusters.

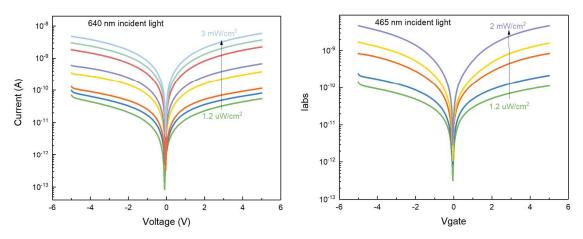


Fig. S3. I-V curves of the photodetector measured under dark and various light illumination (650 nm and 465 nm), respectively.